

ABCE the Agent-Based Computational Economy platform that makes modeling easier

ABCE is a Python based modeling platform for economic simulations.
ABCE comes with standard functions to simulations of trade, production
and consumption. The modeler can concentrate on implementing
the logic and decisions of an agents; ABCE takes care of all exchange
of goods and production and consumption.

[image: _images/cheesegrater.png]

In ABCE goods have the physical properties of
goods in reality in the sense that if agent A gives a good to agent B, then
- unlike information - agent B receives the good and agent B does not have
the good anymore.
The ownership and transformations (production or consumption) of goods are
automatically handled by the platform.

ABCE models are programmed in standard Python, stock functions of agents
can be inherited from archetype classes (Firm or Household). The only
not-so-standard Python is that agents are executed in parallel by the
Simulation class (in start.py).

ABCE allows the modeler to program agents as ordinary Python class-objects,
but run the simulation on a multi-core/processor computer. It takes no
effort or intervention from the modeler to run the simulation on a
multi-core system.
The speed advantages of using ABCE with multi-processes enabled.
ABCE are typically only observed for 10000 agents and more. Below, it
might be slower than pure python implementation. ABCE supports pypy3,
which is approximately 10 times faster than CPython.

ABCE is a scheduler 1 and a set of agent classes.
According to the schedule the simulation class calls - each sub-round - agents
to execute some actions. Each agent executes these actions
using some of the build-in functions, such as trade, production and
consumption of ABCE. The agents can use the full set of commands of the
Python general purpose language.

The audience of ABCE are economists that want to model agent-based
models of trade and production.

ABCE does support an accounting framework
for financial simulations. ESL can be downloaded here [https://github.com/AB-CE/ABCESL].

ABCE runs on macOS, Windows, and Linux. ABCE runs 10x faster on pypy!

Introduction

	Design
	Differences to other agent-based modeling platforms

	General differences to other agent-based modeling platforms

	Physical Goods

	Download and Installation
	Installation Ubuntu

	Installation Mac

	Installation Windows

	Known Issues

	If you have any problems with the installation

	Interactive jupyter notebook Tutorial
	You will learn how to:

	Create Simulation & Agents

	Run a simulation and advance time

	Give Goods & Trade

	Capturing Data and Pandas

	Communication between Simulation and Agents

	Walk through
	start.py

	The agents

	Tutorial for Plant Modeling

	Examples
	Concepts used in examples

	Models

	unit testing

Simulation Programming

	The simulation in start.py

	Agents

	Physical goods and services

	Trade

	Messaging

	Firm and production

	Household and consumption

	Observing agents and logging

	Retrieval of the simulation results

	NotEnoughGoods Exception

Advanced

	Contracting

	Quote

	Spatial and Netlogo like Models

	Plugins

Graphical User Interface and Results

	Graphical User Interface

	Deploying an ABCE simulation on-line

Frequently asked Questions

	How to share public information?

	How to share a global state?

	How to access other agent’s information?

	How to make abcEconomics fast?

	How to load agent-parameters from a csv / excel / sql file?

Indices and tables

	Index

	Module Index

	Search Page

	1

	the Simulation class

	2

	with out the equilibrium of course

Design

ABCE’s first design goal is that, code can be rapidly written,
to enable a modeler to quickly write down
code and quickly explore different alternatives of a model.

Execution speed is a secondary concern to the goal of rapid development.
Execution speed is achieved by making use of multiple-cores/processors
and using C++ for background tasks or using pypy.

Secondly, the modeler can concentrate on programming the behavior of the agents and
the specification of goods, production and consumption function.
The functions for economic simulations such as production, consumption,
trade, communication are provided and automatically performed by the platform.

Python has also been chosen as a programming language, because of
it’s rich environment of standard libraries. Python for example
comes with a stock representation of agents in a spacial world,
which allow the modeler to model a spatial model.

Python is especially beginner friendly, but also
easy to learn for people who already know object oriented programming
languages such as Java, C++ or even MATLAB. ABCE uses C++, to handle
background tasks to increase speed.
Python allows simple, but fully functional, programming for economists.
What is more Python is readable even for non Python programmers.

Python is a language that lends itself to writing of code fast, because it
has low overhead. In Python variables do not have to be declared, garbage
does not have to be collected and classes have no boiler-plate code.

Python, is slower than Java or C, but its reputation for slow speed is usually
exaggerated. Various packages for numerical calculations and optimization such as numpy and scipy offer
the C like speed to numerical problems. Contrary to the common belief
Python is not an interpreted language. Pypy even provides a just in time
complier Python is compiled to bytecode and than executed. ABCE allows
to parallelize the code and gain significant speed advantage over
single-threaded code, that does not make use of the speed advantage of
multi-core or multi-processor computers.

ABCE 0.6 supports Python 3.

	1

	Python is often falsely believe to be an interpreted language

For the simulated problem all agents are executed in parallel. This is
achieved by randomizing the arrival of messages and orders between sub-rounds.
For example if in one sub-round all agents make offers and in the next
sub-round all agents receive and answer the offers, the order in which
the agents receive is random, as if the agent’s in the round before
would make offers in a random order.

Differences to other agent-based modeling platforms

We identified several survey articles as well as
a quite complete overview of agent-based modeling software
on Wikipedia. [Serenko2002], [Allan2010]
[Societies2009], [Tobias2004], [Railsback2006],
[abmcomparisonWikipedia2013]. The articles
‘Tools of the Trade’ by Madey and Nikolai [Societies2009]
and ‘Survey of Agent Based Modelling and Simulation Tools’ by Allan [Allan2010]
attempt to give a complete overview
of agent-based modelling platforms/frameworks. The Madey and Nikolai paper
categorizes the abm-platforms according
to several categories. (Programming Language, Type of License,
Operating System and Domain). According to this article, there
is only one software platform which aims at the specific
domain of economics: JASA. But JASA is a modeling platform
that aims specifically at auctions.
Wikipedia [abmcomparisonWikipedia2013] lists JAMEL
as an economic platform, but JAMEL a is closed source and
an non-programming platform. The ‘Survey of Agent Based Modelling and Simulation Tools’
by Allan [Allan2010] draws
our attention to LSD, which, as it states, is rather a system dynamic,
than an agent-based modeling platform. We conclude that
there is a market for a domain specific language for economics.

While the formerly mentioned modeling platforms aim to give a
complete overview, ‘Evaluation of free Java - libraries for
social scientific agent based simulation’ [Tobias2004]
by Tobias and Hoffman
chooses to concentrate on a smaller number of simulation packages.
Tobias and Hoffman discuss: RePast, Swarm, Quicksilver, and VSEit.
We will follow this approach and concentrate on a subset of
ABM models. First as economics is a subset of social science we
dismiss all platforms that are not explicitly targeted at
social science. The list of social science platforms according
to [Societies2009] Madey and Nikolai is:
AgentSheets, LSD, FAMOJA, MAML, MAS-SOC, MIMOSE, NetLogo, Repast
SimBioSys, StarLogo, StarLogoT, StarLogo TNG, Sugarscape, VSEit
NetLogo and Moduleco.
We dismiss some of these frameworks/platforms:

	AgentSheets,

	because it is closed source and not ‘programable’

	LSD,

	because it is a system dynamics rather than an agent-based modeling environment

	MAML,

	because it does not use a standard programming language, but it is it’s own.

	MAS-SOC,

	because we could not find it in the Internet and its documentation
according to [Allan2010] is sparse.

	MIMOSE,

	is an interesting language, but we will not analyze as it is based on a completely different
programming paradigm, functional programming, as opposed to object-oriented
programming.

	SimBioSys,

	because it has according to Allan [Allan2010] and our research a sparse documentation.

	StarLogo, StarLogoT, StarLogo TNG,

	because they have been superseded by NetLogo

	Moduleco,

	because it has according to Allan [Allan2010] and our research a sparse documentation.
Further, it appears not to be updated since roughly 2001

We will concentrate on the most widely used ABM frameworks/platforms: MASON, NetLogo, Repast.

General differences to other agent-based modeling platforms

First of all ABCE is domain specific, that enables it to provide
the basic functions such as production, consumption, trade and
communication as fully automated stock methods.
Because any kind of agent interaction (communication and exchange of
goods) is handled automatically ABCE, it can run the agents (virtually)
parallel and run simulations on multi-core/processor systems without
any intervention by the modeler.

The second biggest difference between ABCE and other platforms
is that ABCE introduces the physical good as an ontological object in
the simulation. Goods can be exchanged and transformed. ABCE handles
these processes automatically, so that for the model a physical good
behaves like a physical good and not like a message. That means that
if a good is transfered between two agents the first agent does not
have this good anymore, and the second agent has it now. Once, for
example, two agents decide to trade
a good ABCE makes sure that the transaction is cleared between
the two agents.

Thirdly, ABCE is just a scheduler that schedules the actions of
the agents and a python base class that enables the agent to
produce, consume, trade and communicate. A model written
in ABCE, therefore is standard Python code and the modeler can make
use of the complete Python language and the Python language environment.
This is a particular useful feature because Python comes with about 30.000 2
publicly available packages, that could be used in ABCE. Particularly
useful packages are:

	pybrain

	a neural network package

	numpy

	a package for numerical computation

	scipy

	a package for numerical optimization and statistical functions

	sympy

	a package for symbolic manipulation

	turtle

	a package for spacial representation ala NetLogo

Fourth, many frameworks such as FLAME, NetLogo, StarLogo, Ascape
and SugarScape and, in a
more limited sense, Repast are designed with spacial representation in mind.
For ABCE a spacial representation is possible, but not a design goal.
However, since agents in ABCE are ordinary Python objects, they can use
python modules such as python-turtle and therefore gain a spacial
representation much like NetLogo. This does by no means mean that
ABCE could not be a good choice for a problem where the spacial
position plays a role. If for example the model has different
transport costs or other properties according to the geographical
position of the agents, but the agent’s do not move or the movement
does not have to be represented graphically, ABCE could still be a
good choice.

Difference to MASON

Masons is a single-threaded discrete event platform that is intended
for simulations of social, biological and economical systems.
[Luke]. Mason is a platform that was explicitly designed with the goal of
running it on large platforms. MASON distributes a large number
of single threaded simulations over deferent computers or processors.
ABCE on the other hand is multi-threaded it
allows to run agents in parallel. A single run of a simulation
in MASON is therefore not faster on a computing cluster than
on a potent single-processor computer. ABCE on the other hand
uses the full capacity of multi-core/processor systems for
a single simulation run. The fast
execution of a model in ABCE allow a different software
development process, modelers can ‘try’ their models while they
are developing and adjust the code until it works as desired.
The different nature of both
platforms make it necessary to implement a different event
scheduling system.

Mason is a discrete event platform. Events can be scheduled by the
agents. ABCE on the other hand is scheduled -
it has global list of sub-rounds that establish the sequence
of actions in every round. Each of these sub-rounds lets a
number of agents execute the same actions in parallel.

MASON, like Repast Java is based on Java, while ABCE is
based on Python, the advantages have been discussed before.

Difference to NetLogo

Netlogo is a multi-agent programming language, which is part of
the Lisp language family. Netlogo is interpreted.
[Tisue2004] Python on the
other hand is a compiled 3 general programming language.
Consequently it is faster than NetLogo.

Netlogo’s most prominent feature are the turtle agents. To
have turtle agents in ABCE, Python’s turtle library has to be
used. The graphical representation of models is therefore not
part of ABCE, but of Python itself, but needs to be included by
the modeler.

One difference between Netlogo and ABCE is that it has the
concept of the observer agent, while in ABCE the simulation
is controlled by the simulation process.

Difference Repast

Repast is a modeling environment for social science. It was
originally conceived as a Java recoding of SWARM.
[Collier] [NORTH2005] Repast
comes in several flavors: Java, .Net, and a Python like
programming language. Repast has been superseded by
Repast Symphony which maintains all functionality, but
is limited to Java. Symphony has a point and click
interface for simple models. [NORTH2005a]

Repast does allow static and dynamic scheduling.
[Collier]. ABCE,
does not (yet) allow for dynamic scheduling. In ABCE, the
order of actions - or in ABCE language order of sub-rounds -
is fixed and is repeated for every round. This however is not
as restrictive as it sounds, because in any sub-round an
agent could freely decide what he does.

The advantage of the somehow more limited implementation of
ABCE is ease of use. While in Repast it is necessary to
subclass the scheduler in ABCE it is sufficient to specify
the schedule and pass it the Simulation class.

Repast is vast, it contains 210 classes in 9 packages
[Collier]. ABCE, thanks to its limited
scope and Python, has only 6 classes visible to the
modeler in a single package.

	2

	https://pypi.python.org/

Physical Goods

Physical goods are at the heart of almost every economic model.
The core feature and main difference to other ABM platforms is the
implementation of physical goods. In contrast
to information or messages, sharing a good means having less of it. In other
words if agent A gives a good to agent B then agent A does not have this good
anymore. On of the major strength of ABCE is that this is automatically handled.

In ABCE goods can be created, destroyed, traded, given or changed through
production and consumption. All these functions are implemented in ABCE and
can be inherited by an agent as a method. These functions are automatically handled by
ABCE upon decision from the modeler.

Every agent in ABCE must inherit from the abce.Agent class. This gives the
agent a couple of stock methods: create, destroy, trade and give. Create and
destroy create or destroy a good immediately. Because trade and give involve
a form of interaction between the agents they run over several sub-rounds.
Selling of a good for example works like this:

	
	Sub-round 1. The first agent offers the goods.

	The good is automatically subtracted from the agents possessions, to avoid double selling.

	
	Sub-round 2. The counter agent receives the offer. The agent can

	
	accept:
the goods are added to the counter part’s possessions. Money is subtracted.

	reject (or equivalently ignore):
Nothing happens in this sub-round

	partially accept the offer:
The partial amount of goods is added to the counter part’s possessions. Money is subtracted.

	
	Sub-round 3. In case of

	
	acceptance, the money is credited

	rejection the original good is re-credited

	partial acceptance the money is credited and
the unsold part of the good is re-credited.

	3

	Python contrary to the common believe is compiled to bytecode similar to Java’s compilation to bytecode.

Download and Installation

ABCE works exclusively with python 3!

Installation Ubuntu

	If python3 and pip not installed in terminal 2

sudo apt-get install python3
sudo apt-get install python3-pip

	In terminal:

sudo pip3 install abce

	download and unzip the
zip file with examples and the template [https://github.com/AB-CE/examples]
from: https://github.com/AB-CE/examples

	Optional for a 10 fold speed increase:

Install pypy3 from https://pypy.org/download.html

	Install pypy3 additionally:

sudo pypy3 -m pip install abce

	For pypy execute models with pypy3 start.py instead
of python3 start.py

Installation Mac

	If you are on OSX Yosemite, download and install: Command line Tools (OS X 10.10)
for XCODE 6.4 from https://developer.apple.com/downloads/

	If pip not installed in terminal:

sudo python3 -m easy_install pip

	In terminal:

sudo pip3 install abce

	If you are on El Capitain, OSX will ask you to install cc - xcode “Command Line Developer Tools”, click accept. 1

	If XCODE was installed type again in terminal:

sudo pip3 install abce

	download and unzip the
zip file with examples and the template [https://github.com/AB-CE/examples]
from: https://github.com/AB-CE/examples

	Optional for a 10 fold speed increase:

Install pypy3 from https://pypy.org/download.html

	Install pypy3 additionally:

sudo pypy3 -m pip install abce

	For pypy execute models with pypy3 start.py instead
of python3 start.py

Installation Windows

ABCE works best with anaconda python 3.5 follow
the instructions blow.

	Install the python3.5 anaconda distribution from https://continuum.io/downloads

	anaconda prompt or in the command line (cmd) type:

pip install abce

	download and unzip the
zip file with examples and the template [https://github.com/AB-CE/examples]
from: https://github.com/AB-CE/examples

Known Issues

	When you run an IDE such as spyder sometimes the website blocks. In

order to avoid that, modify the ‘Run Setting’ and choose
‘Execute in external System Terminal’.

	When the simulation blocks, there is probably a simulation.finalize() command

missing after the simulation loop

If you have any problems with the installation

Mail to: DavoudTaghawiNejad@gmail.com

	1

	xcode 7 works only on OSX El Capitan. You need to either upgrade or if you want to
avoid updating download xcode 6.4 from here: https://developer.apple.com/downloads/

	2

	If this fails sudo apt-add-repository universe and sudo apt-get update

Interactive jupyter notebook Tutorial

You will learn how to:

Create Simulation & Agents

Run a simulation and advance time

Give Goods & Trade

Capturing Data and Pandas

Communication between Simulation and Agents

 Walk through

Walk through

In order to learn using ABCE we will now dissect and explain a simple ABCE model.
Additional to this walk through you should also have a look on the examples in

<https://github.com/AB-CE/examples>(https://github.com/AB-CE/examples),

Objects the other ontological object of agent-based models.

	Objects have a special stance in agent-based modeling:

	
	objects can be recovered (resources)

	exchanged (trade)

	transformed (production)

	consumed

	destroyed (not really) and time depreciated

ABCE, takes care of trade, production / transformation and consumption
of goods automatically. Good categories can also be made to perish or regrow.

	Services or labor

	We can model services and labor as goods that perish
and that are replenished every round. This would amount to a worker that can
sell one unit of labor every round, that disappears if not used.

	Closed economy

	When we impose that goods can only be transformed. The economy is physically
closed (the economy is stock and flow consistent). When the markets are in a
complete network our economy is complete. Think “general” in equilibrium
economics.

Caveats: If agents horde without taking their stock into account it’s
like destruction.

start.py

""" 1. Build a Simulation
 2. Build one Household and one Firm follow_agent
 3. For every labor_endowment an agent has he gets one trade or usable labor
 per round. If it is not used at the end of the round it disappears.
 4. Firms' and Households' possessions are monitored to the points marked in
 timeline.
"""

from abce import Simulation, gui
from firm import Firm
from household import Household

def main():
 simulation = Simulation()

 simulation.declare_round_endowment(resource='labor_endowment', units=1, product='labor')
 simulation.declare_perishable(good='labor')

 firms = simulation.build_agents(Firm, 'firm', 1)
 households = simulation.build_agents(Household, 'household', 1)

 for r in range(100):
 simulation.advance_round(r)
 households.sell_labor()
 firms.buy_labor()
 firms.production()
 (households + firms).panel_log(possessions=['money', 'GOOD'])
 households.panel_log(variables=['current_utility'])
 firms.sell_goods()
 households.buy_goods()
 households.consumption()

 simulation.graphs()

if __name__ == '__main__':
 main()

It is of utter most importance to end with either simulation.graphs() or simulation.finalize()

A simulation with GUI

In start.py the simulation, thus the parameters, objects, agents and time line are
set up. Further it is declared, what is observed and written to the database.

from abce import Simulation, gui
from firm import Firm
from household import Household

Here the Agent class Firm is imported from the file firm.py. Likewise the Household class.
Further the Simulation base class and the graphical user interface (gui) are imported

Parameters are specified as a python dictionary

parameters = {'name': '2x2',
 'random_seed': None,
 'rounds': 10,
 'slider': 100.0,
 'Checkbox': True,
 'Textbox': 'type here',
 'integer_slider': 100,
 'limited_slider': (20, 25, 50)}

@gui(parameters)
def main(parameters):
 . . .

if __name__ == '__main__':
 main(parameters)

The main function is generating and executing the simulation. When the main
function is preceded with @gui(simulation_parameters) The graphical user interface is started
in your browser the simulation_parameters are used as default values. If no
browser window open you have to go manually to the
address “http://127.0.0.1:8000/”. The graphical user interface starts the
simulation.

During development its often more practical run the simulation without
graphical user interface (GUI). In order to switch of the GUI comment
out the #@gui(simulation_parameters).
In order show graphs at the end of the simulation add simulation.graphs()
after simulation.run, as it is done in start.py above.

To set up a new model, you create a class instance a that will comprise your model

simulation = Simulation(name="ABCE")

...

The order of actions: The order of actions within a round

Every agents-based model is characterized by the order of which the actions are executed.
In ABCE, there are rounds, every round is composed of sub-rounds, in which a group or
several groups of agents act in parallel. In the
code below you see a typical sub-round. Therefore after declaring the Simulation the
order of actions, agents and objects are added.

for round in range(1000):
 simulation.advance_round(round)
 households.sell_labor()
 firms.buy_labor()
 firms.production()
 (households + firms).panel_log(...)
 firms.sell_goods()
 households.buy_goods()
 households.consumption()

This establishes the order of the simulation. Make sure you do not overwrite
internal abilities/properties of the agents. Such as ‘sell’, ‘buy’ or ‘consume’.

A more complex example could be:

for week in range(52):
 for day in ['mo', 'tu', 'we', 'th', 'fr']:
 simulation.advance_round((week, day))
 if day = 'mo':
 households.sell_labor()
 firms.buy_labor()
 firms.production()
 (households + firms).panel()
 for i in range(10):
 firms.sell_goods()
 households.buy_goods()
 households.consumption()
 if week == 26:
 government.policy_change()

Interactions happen between sub-rounds. An agent, sends a message in one round.
The receiving agent, receives the message the following sub-round. A trade is
finished in three rounds: (1) an agent sends an offer the good is blocked, so it
can not be sold twice (2) the other agent accepts or rejects it. (3) If
accepted, the good is automatically delivered at the beginning of the sub-round.
If the trade was rejected: the blocked good is automatically unblocked.

Special goods and services

Now we will establish properties of special goods. A normal good can just be
created or produced by an agent; it can also be destroyed, transformed or consumed
by an agent.
Some goods ‘replenish’ every round. And
some goods ‘perish’ every round. These properties have to be declared:

This example declares ‘corn’ perishable and every round the agent gets 100 units of
of ‘corn’ for every unit of field he possesses. If the corn is not consumed, it
automatically disappears at the end of the round.

simulation.declare_round_endowment('field', 100, 'corn')

simulation.declare_round_endowment(resource='labor_endowment',
 units=1,
 product='labor'
)

declare_round_endowment, establishes that at the beginning of every round,
every agent that possesses x units of a resource, gets x*units units of the product.
Every owner of x fields gets 100*x units of corn. Every owner of labor_endowment
gets one unit of labor for each unit of labor_endowment he owns. An agent has to
create the field or labor_endowment by self.create('field', 5), for
labor_endowment respectively.

simulation.declare_perishable('corn')
simulation.declare_perishable(good='labor')

declare_perishable, establishes that every unit of the specified good that is not used by
the end of the round ceases to exist.

Declaring a good as replenishing and perishable is ABCE’s way of treating services.
In this example every household has some units of labor that can be used in the
particular period. abce.Simulation.declare_service() is a synthetic way
of declaring a good as a service.

One important remark, for a logically consistent macro-model it is best to
not create any goods during the simulation, but only in
abce.Agent.init(). During the simulation the only new goods
should be created by abce.Simulation.declare_round_endowment().
In this way the economy is physically closed.

firms.panel_log(possessions=['good1', 'good2') # a list of firm possessions to track here

households.agg_log('household', possessions=['good1', 'good2'],
 variables=['utility']) # a list of household variables to track here

The possessions good1 and good2 are tracked, the agent’s variable self.utility is tracked.
There are several ways in ABCE to log data. Note that the variable names a strings.

Alternative to this
you can also log within the agents by simply using self.log(‘text’, variable) (abce.Database.log())
Or self.log(‘text’, {‘var1’: var1, ‘var2’: var2}). Using one log command with a dictionary is faster than
using several seperate log commands.

Having established special goods and logging, we create the agents:

simulation.build_agents(Firm, 'firm', number=simulation_parameters['number_of_firms'], parameters=simulation_parameters)
simulation.build_agents(Household, 'household', number=10, parameters=simulation_parameters)

	Firm is the class of the agent, that you have imported

	‘firm’ is the group_name of the agent

	number is the number of agents that are created

	parameters is a dictionary of parameters that the agent receives in the init function
(which is discussed later)

simulation.build_agents(Plant, 'plant',
 parameters=simulation_parameters,
 agent_parameters=[{'type':'coal' 'watt': 20000},
 {'type':'electric' 'watt': 99}
 {'type':'water' 'watt': 100234}])

This builds three Plant agents. The first plant gets the first dictionary as a agent_parameter {‘type’:’coal’ ‘watt’: 20000}.
The second agent, gets the second dictionary and so on.

The agents

The Household agent

import abce

class Household(abce.Agent, abce.Household, abce.Trade):
 def init(self, simulation_parameters, agent_parameters):
 """ 1. labor_endowment, which produces, because of simulation.declare_resource(...)
 in start.py one unit of labor per month
 2. Sets the utility function to utility = consumption of good "GOOD"
 """
 self.create('labor_endowment', 1)
 self.set_cobb_douglas_utility_function({"GOOD": 1})
 self.current_utility = 0

 def sell_labor(self):
 """ offers one unit of labor to firm 0, for the price of 1 "money" """
 self.sell('firm', 0,
 good="labor",
 quantity=1,
 price=1)

 def buy_goods(self):
 """ receives the offers and accepts them one by one """
 oo = self.get_offers("GOOD")
 for offer in oo:
 self.accept(offer)

 def consumption(self):
 """ consumes_everything and logs the aggregate utility. current_utility
 """
 self.current_utility = self.consume_everything()
 self.log('HH', self.current_utility)

The Firm agent

import abce

class Firm(abce.Agent, abce.Firm, abce.Trade):
 def init(self, simulation_parameters, agent_parameters):
 """ 1. Gets an initial amount of money
 2. create a cobb_douglas function: GOOD = 1 * labor ** 1.
 """
 self.create('money', 1)
 self.set_cobb_douglas("GOOD", 1, {"labor": 1})

 def buy_labor(self):
 """ receives all labor offers and accepts them one by one """
 oo = self.get_offers("labor")
 for offer in oo:
 self.accept(offer)

 def production(self):
 """ uses all labor that is available and produces
 according to the set cobb_douglas function """
 self.produce_use_everything()

 def sell_goods(self):
 """ offers one unit of labor to firm 0, for the price of 1 "money" """
 self.sell('household', 0,
 good="GOOD",
 quantity=self.possession("GOOD"),
 price=1)

Agents are modeled in a separate file. In the template directory, you will find
two agents: firm.py and household.py.

At the beginning of each agent you will find

An agent has to import the abce module and the abce.NotEnoughGoods exception

import abce
from abce import NotEnoughGoods

This imports the module abce in order to use the base classes Household and Firm.
And the NotEnoughGoods exception that allows us the handle situation in which the
agent has insufficient resources.

An agent is a class and must at least inherit abce.Agent.
It automatically inherits abce.Trade - abce.Messaging
and abce.Database

class Agent(abce.Agent):

To create an agent that has can create a consumption function and consume

class Household(abce.Agent, abce.Household):

To create an agent that can produce:

class Firm(abce.Agent, abce.Firm)

You see our Household agent inherits from abce.Agent, which is compulsory and abce.Household.
Household on the other hand are a set of methods that are unique for Household agents.
The Firm class accordingly

The init method

When an agent is created it’s init function is called and the simulation
parameters as well as the agent_parameters are given to him

DO NOT OVERWRITE THE __init__ method. Instead use ABCE’s init method,
which is called when the agents are created

def init(self, parameters, agent_parameters):
 self.create('labor_endowment', 1)
 self.set_cobb_douglas_utility_function({"MLK": 0.300, "BRD": 0.700})
 self.type = agent_parameters['type']
 self.watt = agent_parameters['watt']
 self.number_of_firms = parameters['number_of_firms']

The init method is the method that is called when the agents are created (by
the abce.Simulation.build_agents()). When the agents were build,
a parameter dictionary and a list of agent parameters were given. These
can now be accessed in init via the parameters and
agents_parameters variable. Each agent gets only one element of the
agents_parameters list.

With self.create the agent creates the good ‘labor_endowment’. Any
good can be created. Generally speaking. In order to have a physically consistent
economy goods should only be created in the init method. The good money is used
in transactions.

This agent class inherited abce.Household.set_cobb_douglas_utility_function()
from abce.Household. With
abce.Household.set_cobb_douglas_utility_function() you can create a
cobb-douglas function. Other functional forms are also available.

In order to let the agent remember a parameter it has to be saved in the self
domain of the agent.

The action methods and a consuming Household

All the other methods of the agent are executed when the corresponding sub-round is
called from the action_list in the Simulation in start.py.

For example when in the action list (‘household’, ‘consumption’) is called the consumption method
is executed of each household agent is executed. It is important not to
overwrite abce’s methods with the agents methods. For example if one would
call the consumption(self) method below consume(self), abce’s
consume function would not work anymore.

class Household(abce.Agent, abce.Household):
 def init(self, simulation_parameters, agent_parameters):
 self.create('labor_endowment', 1)
 self.set_cobb_douglas_utility_function({"GOOD": 1})
 self.current_utility = 0

 . . .

 def consumption(self):
 """ consumes_everything and logs the aggregate utility. current_utility
 """
 self.current_utility = self.consume_everything()
 self.log('HH', self.current_utility)

In the above example we see how a (degenerate) utility function is declared and how the
agent consumes. The dictionary assigns an exponent for each good, for example
a consumption function that has .5 for both exponents would be {‘good1’: 0.5, ‘good2’: 0.5}.

In the method consumption, which has to be called form the action_list in the
Simulation, everything is consumed an the utility from the consumption
is calculated and logged. The utility is logged and can be retrieved see
retrieval of the simulation results

Firms and Production functions

Firms do two things they produce (transform) and trade. The following
code shows you how to declare a technology and produce bread from labor and
yeast.

class Agent(abce.Agent, abce.Firm):
 def init(self):
 set_cobb_douglas('bread', 1.890, {"yeast": 0.333, "labor": 0.667})
 ...

 def production(self):
 self.produce_use_everything()

More details in abce.Firm. abce.FirmMultiTechnologies offers
a more advanced interface for firms with layered production functions.

Trade

ABCE clears trade automatically. That means, that goods are automatically
exchanged, double selling of a good is avoided by subtracting a good from
the possessions when it is offered for sale. The modeler has only to decide
when the agent offers a trade and sets the criteria to accept the trade

Agent 1
def selling(self):
 offer = self.sell(buyer, 2, 'BRD', price=1, quantity=2.5)
 self.checkorders.append(offer) # optional

Agent 2
def buying(self):
 offers = self.get_offers('cookies')
 for offer in offers:
 if offer.price < 0.5
 try:
 self.accept(offer)
 except NotEnoughGoods:
 self.accept(offer, self.possession('money') / offer.price)

Agent 1
def check_trade(self):
 print(self.checkorders[0])

Agent 1 sends a selling offer to Agent 2, which is the agent with the id 2 from the buyer group (buyer_2)
Agent 2 receives all offers, he accepts all offers with a price smaller that 0.5. If
he has insufficient funds to accept an offer an NotEnoughGoods exception is thrown.
If a NotEnoughGoods exception is thrown the except block
self.accept(offer, self.possession('money') / offer.price) is executed, which
leads to a partial accept. Only as many goods as the agent can afford are accepted.
If a polled offer is not accepted its automatically rejected. It can also be explicitly
rejected with self.reject(offer) (abce.Trade.reject()).

You can find a detailed explanation how trade works in abce.Trade.

Data production

There are three different ways of observing your agents:

Trade Logging

when you specify Simulation(..., trade_logging='individual')
all trades are recorded and a SAM or IO matrix is created.
This matrices are currently not display in the GUI, but
accessible as csv files in the simulation.path directory

Manual in agent logging

An agent can log a variable, abce.Agent.possession(), abce.Agent.possessions()
and most other methods such as abce.Firm.produce() with abce.Database.log():

self.log('possessions', self.possessions())
self.log('custom', {'price_setting': 5: 'production_value': 12})
prod = self.production_use_everything()
self.log('current_production', prod)

Retrieving the logged data

If the GUI is switched off there must be a
abce.Simulation.graphs() after abce.Simulation.run() .
Otherwise no graphs are displayed.
If no browser window open you have to go manually to the
address “http://127.0.0.1:8000/”

The results are stored in a subfolder of the ./results/ folder.
simulation.path gives you the path to that folder.

The tables are stored as ‘.csv’ files which can be opened with excel.

	1

	round % 2 == 0 means the remainder of round divided by 2 is zero.

 Tutorial for Plant Modeling

Tutorial for Plant Modeling

	Lets write the 1st agent:

	Create a file chpplant.py import abce and create a Plant class.

import abce

class CHPPlant(abce.Agent, abce.Firm):

	In def init(self): (not __init__!) we need to create some initial goods

class CHPPlant(...):

 ...
 def init(self):
 self.create('biogas', 100)
 self.create('water', 100)

	Now we need to specify production functions. There are standard production functions like cobb-douglas and leontief already implemented, but our plants get more complicated production functions.
We define the production function a firm uses in def init(self).
So there add the following lines, class CHPPLant(…):

class CHPPlant(...):

 def init(self):
 self.create('biogas', 100)
 self.create('water', 100)

 def production_function(biogas, water):
 electricity = biogas ** 0.25 * water ** 0.5
 steam = min(biogas, water)
 biogas = 0
 water = 0
 return locals()

 self.production_function = production_function

The def production_function(biogas, water): returns the production result as a dictionary. (try print(production_function(10, 10))). Each key is a good that is produced or what remains of a good after the production process. If goods are used up they must be set to 0. For example the function above creates electricity and steam. Electricity is produced by a cobb-douglas production function. While steam is the minimum between the amount of water and fuel used.

The production_function function is local function in the init method. Make sure the return locals() is part of the def production_function(…): not of the def init(self): method.

	In order to produce create a production method in class CHPPlant(…): insert the following code right after the def init(self): method:

class CHPPlant(...):
 ...
 def production(self):
 self.produce(self.production_function, {'biogas': 100, 'water': 100})

	also add:

class CHPPlant(...):
 ...
 def refill(self):
 self.create('biogas', 100)
 self.create('water', 100)

	Create a file start.py to run this incomplete simulation.

	Import abce and the plant:

import abce
from chpplant import CHPPlant

	Create a simulation instance:

simulation = abce.Simulation()

	Build an a plant

chpplant = simulation.build_agents(CHPPlant, 'chpplant', number=1)

With this we create 1 agent of type CHPPLANT, it’s group name will be chpplant and its number 0.
Therefore its name is the tuple (‘chpplant’, 0)

	Loop over the simulation:

for r in range(100):
 simulation.advance_round(r)
 chpplant.production()
 chpplant.panel_log(goods=['electricity', 'biogas', 'water', 'steam'], variables=[])
 chpplant.refill()

simulation.graphs()
simulation.finalize()

This will tell the simulation that in every round, the plant execute the production method we specified in CHPPLant. Then it refills the input goods. Lastly, it creates a snapshot of the goods of chpplant as will be specified in (e).

simulation.advance_round(r) sets the time r. Lastly :py:`simulation.graphs()` or simulation.finalize() tells the simulation that the loop is done. Otherwise the program hangs at the end.

	To run your simulation, the best is to use the terminal and in the directory of your simulation type python start.py. In SPYDER make sure that BEFORE you run the simulation for the first time you modify the ‘Run Setting’ and choose ‘Execute in external System Terminal’. If you the simulation in the IDE without making this changes the GUI might block.

	Lets modify the agent so he is ready for trade

	now delete the refill function in CHPPlant, both in the agent and in the actionlist delete chpplant.refill()

	let’s simplify the production method in CHPPlant to

def production(self):
 self.produce_use_everything()

	in init we create money with self.create(‘money’, 1000)

	Now let’s create a second agent ADPlant.

	copy chpplant.py to applant.py and

	in adplant.py change the class name to ADPlant

	ADPlant will produce biogas and water out of steam and electricity. In order to achieve this forget about thermodynamics and change the production function to

def production_function(steam, electricity):
 biogas = min(electricity, steam)
 water = min(electricity, steam)
 electricity = 0
 steam = 0
 return locals()

	Given the new technology, we need to feed different goods into our machines. Replace the production step

def production(self):
 self.produce(self.production_function, {'steam': self['steam'], 'electricity': self['electricity']})

self[‘steam’], looks up the amount of steam the company owns. self.not_reserved[‘steam’], would look up
the amount of steam a company owns minus all steam that is offered to be sold to a different company.

	ADPlant will sell everything it produces to CHPPlant. We know that the group name of chpplant is ‘chpplant and its id number (id) is 0. Add another method to the ADPlant class.

def selling(self):
 amount_biogas = self['biogas]
 amount_water = self['water']
 self.sell(('chpplant', 0), good='water', quantity=amount_water, price=1)
 self.sell(('chpplant', 0), good='biogas', quantity=amount_biogas, price=1)

This makes a sell offer to chpplant.

	In CHPPlant respond to this offer, by adding the following method.

def buying(self):
 water_offer = self.get_offers('water')[0]
 biogas_offer = self.get_offers('biogas')[0]

 if (water_offer.price * water_offer.quantity +
 biogas_offer.price * biogas_offer.quantity < self['money']):
 self.accept(water_offer)
 self.accept(biogas_offer)
 else:
 quantity_allocationg_half_my_money = self['money'] / water_offer.price
 self.accept(water_offer, min(water_offer.quantity, quantity_allocationg_half_my_money))
 self.accept(biogas_offer, min(biogas_offer, self['money']))

This accepts both offers if it can afford it, if the plant can’t, it allocates half of the money for either good.

	reversely in CHPPlant:

def selling(self):
 amount_electricity = self['electricity']
 amount_steam = self['steam']
 self.sell(('adplant', 0), good='electricity', quantity=amount_electricity, price=1)
 self.sell(('adplant', 0), good='steam', quantity=amount_steam, price=1)

	and in ADPlant:

def buying(self):
 el_offer = self.get_offers('electricity')[0]
 steam_offer = self.get_offers('steam')[0]

 if (el_offer.price * el_offer.quantity
 + steam_offer.price * steam_offer.quantity < self['money']):
 self.accept(el_offer)
 self.accept(steam_offer)
 else:
 quantity_allocationg_half_my_money = self['money'] / el_offer.price
 self.accept(el_offer, min(el_offer.quantity, quantity_allocationg_half_my_money))
 self.accept(steam_offer, min(steam_offer, self['money']))

	let’s modify start.py

	in start.py import thu ADPlant:

from adplant import ADPlant

and

adplant = simulation.build_agents(ADPlant, 'adplant', number=1)

	change the action list to:

for r in range(100):
 simulation.advance_round(r)
 (chpplant + adplant).production()
 (chpplant + adplant).selling()
 (chpplant + adplant).buying()
 chpplant.panel()

	now it should run again.

 Examples

Examples

ABCE’s examples can be downloaded from here: https://github.com/AB-CE/examples

Concepts used in examples

	Example

	jupyter

	pandas

	logging

	Trade

	multi-
core

	create
agents

	delete
agents

	graphical
user
interface

	endowment

	perishable

	mesa
graphical
spacial

	contracts

	jupyter_tutorial

	X

	X

	X

	X

	
	
	
	
	
	
	
	

	50000_firms

	
	
	
	
	X

	
	
	
	
	
	
	

	create_agents
delete_agent

	
	
	
	
	
	X

	X

	
	
	
	
	

	one_household_one_firm

	
	
	
	
	
	
	
	X

	
	
	
	

	
	
	
	
	
	
	
	
	
	X

	X

	
	

	pid_controller

	
	
	
	X

	
	
	
	
	
	
	
	

	mesa_example
sugarscape

	
	
	
	
	
	
	
	
	
	
	X

	

	CCE

	
	X

	
	trade
logging

	
	
	
	
Extended

GUI

	
	
	
	

	cheesegrater insurance

	
	
	
	
	
	
	
	X

	
	
	
	X

	2sectors

	
	
	
	
	
	
	
	
	
	
	
	

	Model of Car market

	
	
	
	
	
	
	
	
	
	
	
	

	Example

	production
function

	utility
function

	arbitrary
time intervals

	multi-
core

	create
agents

	delete
agents

	graphical
user
interface

	endowment

	perishable

	mesa
graphical
spacial

	jupyter_tutorial

	
	
	
	
	
	
	
	
	
	

	50000_firms

	
	
	
	X

	
	
	
	
	
	

	create_agents
delete_agent

	
	
	
	
	X

	X

	
	
	
	

	one_household_one_firm

	
	
	
	
	
	
	simple

	
	
	

	
	
	
	
	
	
	
	
	X

	X

	

	pid_controller

	
	
	
	
	
	
	
	
	
	

	mesa_example
sugarscape

	
	
	
	
	
	
	
	
	
	X

	CCE

	X

	X

	
	
	
	
	X

	
	
	

	cheesegrater insurance

	
	
	
	
	
	
	X

	
	
	

	2sectors

	X

	X

	
	
	
	
	
	
	
	

	Model of Car market

	
	
	
	
	
	
	
	
	
	

	Calendar

	
	
	X

	
	
	
	
	
	
	

Models

CCE

This is the most complete example featuring an agent-based model of climate change tax policies for
the United States. It includes a GUI, is databased and and uses production and utility functions.

One sector model

One household one firm is a minimalistic example of a ‘macro-economy’.
It is ‘macro’ in the sense that the complete circular flow of the economy is
represented. Every round the following sub-rounds are executed:

	household:

	sell_labor

	firm:

	buy_labor

	firm:

	production

	firm:

	sell_goods

	household:

	buy_goods

	household:

	consumption

After the firms’ production and the acquisition of goods by the household
a statistical panel of the firms’ and the households’ possessions, respectively,
is written to the database.

The economy has two goods a representative ‘GOOD’ good and ‘labor’ as
well as money. ‘labor’, which is a service that is represented as a good that
perishes every round when it is not used. Further the endowment is
of the labor good that is replenished every round for every agent that
has an ‘adult’. ‘Adults’ are handled like possessions of the household agent.

The household has a degenerate Cobb-Douglas utility function and the firm
has a degenerate Cobb-Douglas production function:

utility = GOOD ^ 1

GOOD = labor ^ 1

The firms own an initial amount of money of 1 and the household
has one adult, which supplies one unit of (perishable) labor every
round.

First the household sells his unit of labor. The firm buys this unit
and uses all available labor for production. The complete production
is offered to the household, which in turn buys everything it can afford.
The good is consumed and the resulting utility logged to the database.

Two sector model

The two sector model is similar to the one sector model. It has two
firms and showcases ABCE’s ability to control the creation of agents
from an excel sheet.

There are two firms. One firm manufactures an intermediary good. The
other firm produces the final good. Both firms are implemented with
the same good. The type a firm develops is based on the excel sheet.

The two respective firms production functions are:

intermediate_good = labor ^ 1

consumption_good = intermediate_good ^ 1 * labor ^ 1

The only difference is that, when firms sell their products the
intermediate good firm sells to the final good firm and the final
good firm, in the same sub-round sells to the household.

In start.py we can see that the firms that are build are build
from an excel sheet:

w.build_agents_from_file(Firm, parameters_file=’agents_parameters.csv’)
w.build_agents_from_file(Household)

And here the excel sheet:

agent_class number sector
firm 1 intermediate_good
firm 1 consumption_good
household 1 0
household 1 1

The advantage of this is that the parameters can be used in the agent.
The line self.sector = agent_parameters[‘sector’] reads the sector
column and assigns it to the self.sector variable. The file simulation
parameters is read - line by line - into the variable simulation_parameters.
It can be used in start.py and in the agents with
simulation_parameters[‘columnlabel’].

50000 agents example

This is a sheer speed demonstration, that lets 50000 agents trade.

PID controllers

PID controller are a simple algorithm for firms to set prices and
quantities. PID controller, work like a steward of a ship. He
steers to where he wants to go and after each action corrects
the direction based on how the ship changed it’s direction,

pid_controller analytical

A simulation of the first Model of Ernesto Carrella’s paper:
Sticky Prices Microfoundations in a Agent Based Supply Chain
Section 4 Firms and Production

Here we have one firm and one market agent. The market agent
has the demand function q = 102 - p. The PID controller uses
an analytical model of the optimization problem.

Simple Seller Example

A simulation of the first Model of Ernesto Carrella’s paper: Zero-Knowledge Traders,
journal of artificial societies and social simulation, December 2013

This is a partial ‘equilibrium’ model. A firm has a fixed production of 4 it offers
this to a fixed population of 10 household. The household willingness to pay is
household id * 10 (10, 20, 30 … 90).
The firms sets the prices using a PID controller.

Fully PID controlled

A simulation of the first Model of Ernesto Carrella’s paper:
Sticky Prices Microfoundations in a Agent Based Supply Chain
Section 4 Firms and Production

Here we have one firm and one market agent. The market agent
has the demand function q = 102 - p. The PID controller
has no other knowledge then the reaction of the market in
terms of demand.

 unit testing

unit testing

One of the major problem of doing science with simulations is that
results found could be a mere result of a mistake in the software
implementation. This problem is even stronger when emergent phenomena
are expected. The first hedge against this problem is of course
carefully checking the code. ABCE and Pythons brevity and readability
are certainly helping this. However structured testing procedures
create more robust software.

Currently all trade and exchange related as well as endowment, production
utility and data logging facilities are unit tested. It is planned to extend
unit testing to quotes, so that by version 1.0 all functions of the agents
will be fully unit tested.

The modeler can run the unit testing facilities on his own system and therefore
assert that on his own system the code runs correctly.

Unit testing is the testing of the testable part of a the software code.
\cite{Xie2007}. As in ABCE the most crucial functions are
the exchange of goods or information, the smallest testable unit is often
a combination of two actions \cite{Aniche}. For example making an offer and then by
a second agent accepting or rejecting it. The interaction and concurrent
nature of ABCE simulation make it unpractical to use the standard unit
testing procedures of Python.

\cite{Ellims2006} argue that unit-testing is economical. In
the analysis of three projects they find that unit-testing finds errors
in the code and argue that its cost is often exaggerated. We can
therefore conclude that unit-testing is necessary and a cost efficient
way of ensuring the correctness of the results of the simulation. For
the modeler this is an additional incentive to use ABCE, if he
implemented the simulation as a stand alone program he would either have
to forgo the testing of the agent’s functions or write his own unit-testing
facilities.

 The simulation in start.py

The simulation in start.py

The best way to start creating a simulation is by copying the start.py
file and other files from ‘abce/template’ in https://github.com/AB-CE/examples.

To see how to create a simulation, read ipython_tutorial.

This is a minimal template for a start.py:

from agent import Agent
from abce import *

simulation = Simulation(name='ABCE')
agents = simulation.build_agents(Agent, 'agent', 2)
for time in range(100):
 simulation.advance_round(time)
 agents.one()
 agents.two()
 agents.three()
simulation.graphs()

Note two things are important: there must be either a

graphs() or a finalize() at the end
otherwise the simulation blocks at the end.
Furthermore, every round needs to be announced using simulation.advance_round(time),
where time is any representation of time.

	
class abce.Simulation(name='abce', random_seed=None, trade_logging='off', processes=1, check_unchecked_msgs=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This is the class in which the simulation is run. Actions and agents have to
be added. Databases and resource declarations can be added. Then run
the simulation.

	Args:

	
	name:

	name of the simulation

	random_seed (optional):

	a random seed that controls the random number of the simulation

	trade_logging:

	Whether trades are logged,trade_logging can be
‘group’ (fast) or ‘individual’ (slow) or ‘off’

	processes (optional):

	The number of processes that runs in parallel. Each process hosts
a share of the agents.
By default, if this parameter is not specified, processes is all
your logical processor cores times two, using hyper-threading when available.
For easy debugging, set processes to one and the simulation is
executed without parallelization.
Sometimes it is advisable to decrease the number of processes to
the number of logical or even physical processor cores on your
computer.
For easy debugging set processes to 1, this way only one agent
runs at a time and only one error message is displayed

	check_unchecked_msgs:

	check every round that all messages have been received with get_massages or get_offers.

Example:

simulation = Simulation(name='ABCE',
 trade_logging='individual',
 processes=None)

Example for a simulation:

num_firms = 5
num_households = 2000

w = Simulation(name='ABCE',
 trade_logging='individual',
 processes=None)

w.declare_round_endowment(resource='labor_endowment',
 productivity=1,
 product='labor')

w.panel('firm', command='after_sales_before_consumption')

firms = w.build_agents(Firm, 'firm', num_firms)
households = w.build_agents(Household, 'household', num_households)

all = firms + households

for r in range(100):
 self.advance_round(r)
 households.recieve_connections()
 households.offer_capital()
 firms.buy_capital()
 firms.production()
 if r == 250:
 centralbank.intervention()
 households.buy_product()
 all.after_sales_before_consumption()
 households.consume()

w.finalize()
w.graphs()

	
advance_round(time)

	

	
build_agents(AgentClass, group_name, number=None, agent_parameters=None, **parameters)

	This method creates agents.

Args:

	AgentClass:

	is the name of the AgentClass that you imported

	group_name:

	the name of the group, as it will be used in the action list
and transactions. Should generally be lowercase of the
AgentClass.

	number:

	number of agents to be created.

	agent_parameters:

	a list of dictionaries, where each agent gets one dictionary.
The number of agents is the length of the list

	any other parameters:

	are directly passed to the agent

Example:

firms = simulation.build_agents(Firm, 'firm',
 number=simulation_parameters['num_firms'])
banks = simulation.build_agents(Bank, 'bank',
 agent_parameters=[{'name': 'UBS'},
 {'name': 'amex'},{'name': 'chase'}
 **simulation_parameters,
 loanable=True)

centralbanks = simulation.build_agents(CentralBank, 'centralbank',
 number=1,
 rounds=num_rounds)

	
create_agent(AgentClass, group_name, simulation_parameters=None, agent_parameters=None)

	

	
create_agents(AgentClass, group_name, simulation_parameters=None, agent_parameters=None, number=1)

	Creates an additional agent in an existing group during the simulation. If agents
have been deleted, their id’s are reduced.

Args:

	AgentClass:

	the class of agent to create.
(can be the same class as the creating agent)

	‘group_name’:

	the name of the group the agent should belong to. This is the
group name string e.G. 'firm', not the group variable e.G.
firms in firms = simulation.build_agents(...)

	simulation_parameters:

	a dictionary of parameters

	agent_parameters:

	List of a dictionary of parameters

	number:

	if no agent_parameters list is given the number of agents to be created can be specified

	Returns:

	id of new agent.

Example:

self.create_agent(BeerFirm, 'beerfirm',
 parameters=self.parameters,
 agent_parameters={'creation': self.time})

	
declare_expiring(good, duration)

	This type of good lasts for several rounds, but eventually
expires. For example computers would last for several years and than
become obsolete.

Args:

	good:

	the good, which expires

	duration:

	the duration before the good expires

	
declare_perishable(good)

	This good only lasts one round and then disappears. For example
labor, if the labor is not used today today’s labor is lost.
In combination with resource this is useful to model labor or capital.

In the example below a worker has an endowment of labor and capital.
Every round he can sell his labor service and rent his capital. If
he does not the labor service for this round and the rent is lost.

Args:

good:
 the good that perishes

Example::

 w.declare_perishable(good='LAB')
 w.declare_perishable(good='CAP')

	
declare_round_endowment(resource, units, product)

	At the beginning of very round the agent gets ‘units’ units
of good ‘product’ for every ‘resource’ he possesses.

Round endowments are group specific, that means when
somebody except the specified group holds them they do not produce.

Args:

resource:
 The good that you have to hold to get the other

units:
 the multiplier to get the produced good

product:
 the good that is produced if you hold the first good

groups:
 a list of agent groups, which gain the second good,
 if they hold the first one

Example:

A farmer gets a ton of harvest for every acre:

w.declare_round_endowment(resource='land',
 units=1000,
 product='wheat')

	
declare_service(human_or_other_resource, units, service)

	When the agent holds the human_or_other_resource,
he gets ‘units’ of service every round
the service can be used only with in this round.

Args:

human_or_other_resource:
 the good that needs to be in possessions to create the other
 good 'self.create('adult', 2)'
units:
 how many units of the service is available
service:
 the service that is created
groups:
 a list of agent groups that can create the service

Example:

For example if a household has two adult family members, it gets
16 hours of work

w.declare_service('adult', 8, 'work')

	
delete_agent(*ang)

	

	
delete_agents(group, ids)

	This deletes a group of agents. The model has to make sure that other
agents are notified of the death of agents in order to stop them from corresponding
with this agent. Note that if you create new agents
after deleting agents the ID’s of the deleted agents are reused.

	Args:

	
	group:

	group of the agent

	ids:

	a list of ids of the agents to be deleted in that group

	
finalize()

	simulation.finalize() must be run after each simulation. It will
write all data to disk

Example:

simulation = Simulation(...)
...
for r in range(100):
 simulation.advance_round(r)
 agents.do_something()
 ...

simulation.finalize()

	
graphs()

	after the simulation is run, graphs() shows graphs of all data
collected in the simulation. Shows the same output as the @gui
decorator shows.

Example:

simulation = Simulation(...)
for r in range(100):
 simulation.advance_round(r)
 agents.do_something()
 ...

simulation.graphs()

	
path = None

	the path variable contains the path to the simulation outcomes
it can be used to generate your own graphs as all resulting
csv files are there.

	
time = None

	Returns the current time set with simulation.advance_round(time)

 Agents

Agents

The abce.Agent class is the basic class for creating your agents.
It automatically handles the possession of goods of an agent. In order to
produce/transforme goods you also need to subclass the abce.Firm or
to create a consumer the abce.Household.

For detailed documentation on:

Trading, see Trade

Logging and data creation, see Observing agents and logging.

Messaging between agents, see Messaging.

	
class abce.Agent(id, agent_parameters, simulation_parameters, group, trade_logging, database, check_unchecked_msgs, expiring, perishable, resource_endowment, start_round=None)

	Bases: abce.database.Database, abce.trade.Trade, abce.messaging.Messaging, abce.goods.Goods

Every agent has to inherit this class. It connects the agent to the
simulation and to other agent. The abce.Trade,
abce.Database and abce.Messaging classes are included.
An agent can also inheriting from abce.Firm,
abce.FirmMultiTechnologies or abce.Household classes.

Every method can return parameters to the simulation.

For example:

class Household(abce.Agent, abce.Household):
 def init(self, simulation_parameters, agent_parameters):
 self.num_firms = simulation_parameters['num_firms']
 self.type = agent_parameters['type']
 ...

 def selling(self):
 for i in range(self.num_firms):
 self.sell('firm', i, 'good', quantity=1, price=1)

 ...
 def return_quantity_of_good(self):
 return['good']

...

simulation = Simulation()
households = Simulation.build_agents(household, 'household',
 parameters={...},
 agent_parameters=[{'type': 'a'},
 {'type': 'b'}])
for r in range(10):
 simulation.advance_round(r)
 households.selling()
 print(households.return_quantity_of_good())

	
group = None

	self.group returns the agents group or type READ ONLY!

	
id = None

	self.id returns the agents id READ ONLY

	
init()

	This method is called when the agents are build.
It can be overwritten by the user, to initialize the agents.
Parameters are the parameters given to
abce.Simulation.build_agents().

Example:

class Student(abce.Agent):
 def init(self, rounds, age, lazy, school_size):
 self.rounds = rounds
 self.age = age
 self.lazy = lazy
 self.school_size = school_size

 def say(self):
 print('I am', self.age ' years old and go to a school
 that is ', self.school_size')

def main():
 sim = Simulation()
 students = sim.build_agents(Student, 'student',
 agent_parameters=[{'age': 12, lazy: True},
 {'age': 12, lazy: True},
 {'age': 13, lazy: False},
 {'age': 14, lazy: True}],
 rounds=50,
 school_size=990)

	
name = None

	self.name returns the agents name, which is the group name and the
id

	
round = None

	self.round is depreciated

	
time = None

	self.time, contains the time set with simulation.advance_round(time)
you can set time to anything you want an integer or
(12, 30, 21, 09, 1979) or ‘monday’

 Physical goods and services

Physical goods and services

Goods

An agent can access a good with self['cookies'] or
self['money'].

	self.create(money, 15) creates money

	self.destroy(money, 10) destroys money

	goods can be given, taken, sold and bought

	self['money'] returns the quantity an agent possesses

Services

Services are like goods, but the need to be declared as services
in the simulation abce.__init__.service().
In this function one declares a good that creates the other good and
how much. For example if one has self['adults'] = 2, one could
get 16 hours of labor every day. simulation.declare_service('adults', 8, 'labor').

	
class abce.goods.Goods(id, agent_parameters, simulation_parameters, group, trade_logging, database, check_unchecked_msgs, expiring, perishable, resource_endowment, start_round=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Each agent can access his goods. self[‘good_name’] shows the quantity of goods of a certain type an agent
owns. Goods can be a string or any other python object.

	
create(good, quantity)

	creates quantity of the good out of nothing

Use create with care, as long as you use it only for labor and
natural resources your model is macro-economically complete.

	Args:

	‘good’: is the name of the good
quantity: number

	
create_timestructured(good, quantity)

	creates quantity of the time structured good out of nothing.
For example:

self.creat_timestructured('capital', [10,20,30])

Creates capital. 10 units are 2 years old 20 units are 1 year old
and 30 units are new.

It can alse be used with a quantity instead of an array. In this
case the amount is equally split on the years.:

self.create_timestructured('capital', 60)

In this case 20 units are 2 years old 20 units are 1 year old
and 20 units are new.

	Args:

	
	‘good’:

	is the name of the good

	quantity:

	an arry or number

	
destroy(good, quantity=None)

	destroys quantity of the good. If quantity is omitted destroys all

Args:

'good':
 is the name of the good
quantity (optional):
 number

Raises:

NotEnoughGoods: when goods are insufficient

	
not_reserved(good)

	Returns the amount of goods that are not reserved for a trade

	Args:

	good

	
possession(good)

	returns how much of good an agent possesses.

	Returns:

	A number.

possession does not return a dictionary for self.log(…), you can use
self.possessions([…]) (plural) with self.log.

Example:

if self['money'] < 1:
 self.financial_crisis = True

if not(is_positive(self['money']):
 self.bancrupcy = True

	
possessions()

	returns all possessions

 Trade

Trade

	
class abce.Trade(id, agent_parameters, simulation_parameters, group, trade_logging, database, check_unchecked_msgs, expiring, perishable, resource_endowment, start_round=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Agents can trade with each other. The clearing of the trade is taken care
of fully by ABCE.
Selling a good works in the following way:

	An agent sends an offer. sell()

ABCE does not allow you to sell the same good twice; self.free(good) shows how much good is not reserved yet

	Next subround: An agent receives the offer get_offers(), and can
accept(), reject() or partially accept it. accept()

The good is credited and the price is deducted from the agent’s possessions.

	Next subround:

	in case of acceptance the money is automatically credited.

	in case of partial acceptance the money is credited and part of the reserved good is unblocked.

	in case of rejection the good is unblocked.

Analogously for buying: buy()

Example:

Agent 1
def sales(self):
 self.remember_trade = self.sell('Household', 0, 'cookies', quantity=5, price=self.price)

Agent 2
def receive_sale(self):
 oo = self.get_offers('cookies')
 for offer in oo:
 if offer.price < 0.3:
 try:
 self.accept(offer)
 except NotEnoughGoods:
 self.accept(offer, self['money'] / offer.price)
 else:
 self.reject(offer)

Agent 1, subround 3
def learning(self):
 offer = self.info(self.remember_trade)
 if offer.status == 'reject':
 self.price *= .9
 elif offer.status = 'accepted':
 self.price *= offer.final_quantity / offer.quantity

Example:

Agent 1
def sales(self):
 self.remember_trade = self.sell('Household', 0, 'cookies', quantity=5, price=self.price, currency='dollars')

Agent 2
def receive_sale(self):
 oo = self.get_offers('cookies')
 for offer in oo:
 if ((offer.currency == 'dollars' and offer.price < 0.3 * exchange_rate)
 or (offer.currency == 'euros' and dollars'offer.price < 0.3)):

 try:
 self.accept(offer)
 except NotEnoughGoods:
 self.accept(offer, self['money'] / offer.price)
 else:
 self.reject(offer)

If we did not implement a barter class, but one can use this class as a barter class,

	
accept(offer, quantity=-999, epsilon=1e-11)

	The buy or sell offer is accepted and cleared. If no quantity is
given the offer is fully accepted; If a quantity is given the offer is
partial accepted.

Args:

	offer:

	the offer the other party made

	quantity:

	quantity to accept. If not given all is accepted

	epsilon (optional):

	if you have floating point errors, a quantity or prices is
a fraction of number to high or low. You can increase the
floating point tolerance. See troubleshooting – floating point problems

	Return:

	Returns a dictionary with the good’s quantity and the amount paid.

	
buy(receiver, good, quantity, price, currency='money', epsilon=1e-11)

	Sends a offer to buy a particular good to somebody. The money promised
is reserved. (self.free(currency), shows the not yet reserved goods)

	Args:

	
	receiver:

	The name of the receiving agent a tuple (group, id).
e.G. (‘firm’, 15)

	‘good’:

	name of the good

	quantity:

	maximum units disposed to buy at this price

	price:

	price per unit

	currency:

	is the currency of this transaction (defaults to ‘money’)

	epsilon (optional):

	if you have floating point errors, a quantity or prices is
a fraction of number to high or low. You can increase the
floating point tolerance. See troubleshooting – floating point problems

	
get_buy_offers(good, sorted=True, descending=False, shuffled=True)

	

	
get_buy_offers_all(descending=False, sorted=True)

	

	
get_offers(good, sorted=True, descending=False, shuffled=True)

	returns all offers of the ‘good’ ordered by price.

Offers that are not accepted in the same subround (def block) are
automatically rejected. However you can also manually reject.

peek_offers can be used to look at the offers without them being
rejected automatically

	Args:

	
	good:

	the good which should be retrieved

	sorted(bool, default=True):

	Whether offers are sorted by price. Faster if False.

	descending(bool, default=False):

	False for descending True for ascending by price

	shuffled(bool, default=True):

	whether the order of messages is randomized or correlated with
the ID of the agent. Setting this to False speeds up the
simulation considerably, but introduces a bias.

	Returns:

	A list of abce.trade.Offer ordered by price.

Example:

offers = get_offers('books')
for offer in offers:
 if offer.price < 50:
 self.accept(offer)
 elif offer.price < 100:
 self.accept(offer, 1)
 else:
 self.reject(offer) # optional

	
get_offers_all(descending=False, sorted=True)

	returns all offers in a dictionary, with goods as key. The in each
goods-category the goods are ordered by price. The order can be reversed
by setting descending=True

Offers that are not accepted in the same subround (def block) are
automatically rejected. However you can also manually reject.

Args:

	descending(optional):

	is a bool. False for descending True for ascending by price

	sorted(default=True):

	Whether offers are sorted by price. Faster if False.

Returns:

a dictionary with good types as keys and list of abce.trade.Offer
as values

Example:

oo = get_offers_all(descending=False)
for good_category in oo:
 print('The cheapest good of category' + good_category
 + ' is ' + good_category[0])
 for offer in oo[good_category]:
 if offer.price < 0.5:
 self.accept(offer)

for offer in oo.beer:
 print(offer.price, offer.sender)

	
get_sell_offers(good, sorted=True, descending=False, shuffled=True)

	

	
get_sell_offers_all(descending=False, sorted=True)

	

	
give(receiver, good, quantity, epsilon=1e-11)

	gives a good to another agent

	Args:

	
	receiver:

	The name of the receiving agent a tuple (group, id).
e.G. (‘firm’, 15)

	good:

	the good to be transfered

	quantity:

	amount to be transfered

	epsilon (optional):

	if you have floating point errors, a quantity or prices is
a fraction of number to high or low. You can increase the
floating point tolerance. See troubleshooting – floating point problems

Raises:

AssertionError, when good smaller than 0.

	Return:

	Dictionary, with the transfer, which can be used by self.log(…).

Example:

self.log('taxes', self.give('money': 0.05 * self['money'])

	
peak_buy_offers(good, sorted=True, descending=False, shuffled=True)

	

	
peak_offers(good, sorted=True, descending=False, shuffled=True)

	returns a peak on all offers of the ‘good’ ordered by price.
Peaked offers can not be accepted or rejected and they do not
expire.

	Args:

	
	good:

	the good which should be retrieved
descending(bool, default=False):
False for descending True for ascending by price

	Returns:

	A list of offers ordered by price

Example:

offers = get_offers('books')
for offer in offers:
 if offer.price < 50:
 self.accept(offer)
 elif offer.price < 100:
 self.accept(offer, 1)
 else:
 self.reject(offer) # optional

	
peak_sell_offers(good, sorted=True, descending=False, shuffled=True)

	

	
reject(offer)

	Rejects and offer, if the offer is subsequently accepted in the
same subround it is accepted’. Peaked offers can not be rejected.

Args:

	offer:

	the offer to be rejected

	
sell(receiver, good, quantity, price, currency='money', epsilon=1e-11)

	Sends a offer to sell a particular good to somebody. The amount promised
is reserved. (self.free(good), shows the not yet reserved goods)

	Args:

	
	receiver:

	the receiving agent

	‘good’:

	name of the good

	quantity:

	maximum units disposed to buy at this price

	price:

	price per unit

	currency:

	is the currency of this transaction (defaults to ‘money’)

	epsilon (optional):

	if you have floating point errors, a quantity or prices is
a fraction of number to high or low. You can increase the
floating point tolerance. See troubleshooting – floating point problems

	Returns:

	A reference to the offer. The offer and the offer status can
be accessed with self.info(offer_reference).

Example:

def subround_1(self):
 self.offer = self.sell('household', 1, 'cookies', quantity=5, price=0.1)

def subround_2(self):
 offer = self.info(self.offer)
 if offer.status == 'accepted':
 print(offer.final_quantity , 'cookies have be bougth')
 else:
 offer.status == 'rejected':
 print('On diet')

	
take(receiver, good, quantity, epsilon=1e-11)

	take a good from another agent. The other agent has to accept.
using self.accept()

Args:

	receiver:

	the receiving agent

	good:

	the good to be taken

	quantity:

	the quantity to be taken

	epsilon (optional):

	if you have floating point errors, a quantity or prices is
a fraction of number to high or low. You can increase the
floating point tolerance. See troubleshooting – floating point problems

	
abce.trade.Offer(sender, receiver, good, quantity, price, currency, sell, id, made)

	

 Messaging

Messaging

This is the agent’s facility to send and receive messages. Messages can
either be sent to an individual with messaging.Messaging.message() or to a group with
messaging.Messaging.message_to_group(). The receiving agent can either get all messages
with messaging.Messaging.get_messages_all() or messages with a specific topic with
messaging.Messaging.get_messages().

	
class abce.messaging.Messaging(id, agent_parameters, simulation_parameters, group, trade_logging, database, check_unchecked_msgs, expiring, perishable, resource_endowment, start_round=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
get_messages(topic='m')

	self.messages() returns all new messages send with message()
(topic=’m’). The order is randomized. self.messages(topic) returns all
messages with a topic.

A message is a string with the message. You can also retrieve the sender
by message.sender_group and message.sender_id and view the topic with
‘message.topic’. (see example)

If you are sending a float or an integer you need to access the message
content with message.content instead of only message.

! if you want to recieve a float or an int, you must msg.content

	Returns a message object:

	
	msg.content:

	returns the message content string, int, float, …

	msg:

	returns also the message content, but only as a string

	sender_group:

	returns the group name of the sender

	sender_id:

	returns the id of the sender

	topic:

	returns the topic

Example:

... agent_01 ...
self.messages('firm_01', 'potential_buyers', 'hello message')

... firm_01 - one subround later ...
potential_buyers = get_messages('potential_buyers')
for msg in potential_buyers:
 print('message: ', msg)
 print('message: ', msg.content)
 print('group name: ', msg.sender_group)
 print('sender id: ', msg.sender_id)
 print('topic: ', msg.topic)

	
get_messages_all()

	returns all messages irregardless of the topic, in a dictionary by topic

A message is a string with the message. You can also retrieve the sender
by message.sender_group and message.sender_id and view the topic with
‘message.topic’. (see example)

If you are sending a float or an integer you need to access the message
content with message.content instead of only message.

	
send(receiver, topic, content)

	sends a message to agent. Agents receive it
at the beginning of next round with get_messages() or
get_messages_all().

Args:

receiver:
 The name of the receiving agent a tuple (group, id).
 e.G. ('firm', 15)

topic:
 string, with which this message can be received

content:
 string, dictionary or class, that is send.

Example:

... household_01 ...
self.message('firm', 01, 'quote_sell', {'good':'BRD', 'quantity': 5})

... firm_01 - one subround later ...
requests = self.get_messages('quote_sell')
for req in requests:
 self.sell(req.sender, req.good, reg.quantity, self.price[req.good])

Example2:

self.message('firm', 01, 'm', "hello my message")

 Firm and production

Firm and production

	
class abce.agents.Firm

	Bases: object [https://docs.python.org/3/library/functions.html#object]

With self.produce a firm produces a good using production functions.
For example the following farm has a cobb-douglas production function:

	class Farm(abce.Agent, abce.Firm):

	
	def init(self):

	
	self.production_function = create_cobb_douglas({‘land’: 0.7,

	‘capital’: 0.1,
‘labor’: 0.2})

	def firming(self):

	
	self.produce(self.production_function, {{‘land’: self[‘land’],

	‘capital’: self[‘capital’],
‘labor’: 2}})

	Production functions can be auto generated with:

	
	py:meth:~abceagent.Firm.create_cobb_douglas or

	py:meth:~abceagent.Firm.create_ces or

	py:meth:~abceagent.Firm.create_leontief

or specified by hand:

A production function looks like this:

def production_function(wheels, steel, stearing_wheels, plant, machines):
 car = min(wheels / 4, steel / 10, stearing_wheels)
 wheels = 0
 steel = 0
 stearing_wheels = 0
 machine = machine * 0.9
 return locals()

This production function, produces one car for every four wheels, 10 tonnes of steel
and one stearing_wheel, it also requires one machine. Wheels, steel and stearing_wheels
are completely used. The plant is not used and the machine depreciates by 10%.production.

A production function can also produce multiple goods. The last line return locals(),
can not be omitted. It returns all variables you define in this function as a dictionary.

	
create_ces(output, gamma, multiplier=1, shares=None)

	creates a CES production function

A production function is a production process that produces the
given input goods according to the CES formula to the output
good:

\(Q = F \cdot \left[\sum_{i=1}^n a_{i}X_{i}^{\gamma}\ \right]^{\frac{1}{\gamma}}\)

Production_functions are than used as an argument in produce,
predict_vector_produce and predict_output_produce.

Args:

	‘output’:

	Name of the output good

	gamma:

	elasticity of substitution \(= s =\frac{1}{1-\gamma}\)

	multiplier:

	CES multiplier \(F\)

	shares:

	\(a_{i}\) = Share parameter of input i, \(\sum_{i=1}^n a_{i} = 1\)
when share_parameters is not specified all inputs are weighted equally and
the number of inputs is flexible.

Returns:

A production_function that can be used in produce etc.

Example:

self.stuff_production_function = create_ces('stuff', gamma=0.5, multiplier=1,
 shares={'labor': 0.25, 'stone':0.25, 'wood':0.5})
self.produce(self.stuff_production_function, {'stone' : 20, 'labor' : 1, 'wood': 12})

	
create_cobb_douglas(output, multiplier, exponents)

	creates a Cobb-Douglas production function

A production function is a production process that produces the
given input goods according to the Cobb-Douglas formula to the output
good.
Production_functions are than used as an argument in produce,
predict_vector_produce and predict_output_produce.

Args:

	‘output’:

	Name of the output good

	multiplier:

	Cobb-Douglas multiplier

	{‘input1’: exponent1, ‘input2’: exponent2 …}:

	dictionary containing good names ‘input’ and corresponding exponents

Returns:

A production_function that can be used in produce etc.

Example:

	def init(self):

	self.plastic_production_function = create_cobb_douglas(‘plastic’, {‘oil’ : 10, ‘labor’ : 1}, 0.000001)

…

	def producing(self):

	self.produce(self.plastic_production_function, {‘oil’ : 20, ‘labor’ : 1})

	
create_leontief(output, utilization_quantities)

	creates a Leontief production function

A production function is a production process that produces the
given input goods according to the Leontief formula to the output
good.
Production_functions are than used as an argument in produce,
predict_vector_produce and predict_output_produce.

Args:

	‘output’:

	Name of the output good

	multiplier:

	dictionary of multipliers it min(good1 * a, good2 * b, good3 * c…)

	{‘input1’: exponent1, ‘input2’: exponent2 …}:

	dictionary containing good names ‘input’ and corresponding exponents

Returns:

A production_function that can be used in produce etc.

Example:
self.car_production_function = create_leontief(‘car’, {‘wheel’ : 4, ‘chassi’ : 1})
self.produce(self.car_production_function, {‘wheel’ : 20, ‘chassi’ : 5})

	
produce(production_function, input_goods, results=False)

	Produces output goods given the specified amount of inputs.

Transforms the Agent’s goods specified in input goods
according to a given production_function to output goods.
Automatically changes the agent’s belonging. Raises an
exception, when the agent does not have sufficient resources.

	Args:

	
	production_function:

	A production_function produced with
py:meth:~abceagent.Firm.create_production_function,
py:meth:~abceagent.Firm.create_cobb_douglas or
py:meth:~abceagent.Firm.create_leontief

	input goods dictionary or list:

	dictionary containing the amount of input good used for the production or
a list of all goods that get completely used.

	results:

	If True returns a dictionary with the used and produced goods.

	Raises:

	
	NotEnoughGoods:

	This is raised when the goods are insufficient.

Example:

car = {'tire': 4, 'metal': 2000, 'plastic': 40}
bike = {'tire': 2, 'metal': 400, 'plastic': 20}
try:
 self.produce(car_production_function, car)
except NotEnoughGoods:
 A.produce(bike_production_function, bike)

self.produce(car_production_function, ['tire', 'metal', 'plastic']) # produces using all goods

 Household and consumption

Household and consumption

The Household class extends the agent by giving him utility functions and the ability to consume goods.

	
class abce.agents.Household

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
consume(utility_function, input_goods)

	consumes input_goods returns utility according to the agent’s
utility function.

A utility_function, has to be set before see
py:meth:~abceagent.Household.create_cobb_douglas_utility_function or
manually; see example.

Args:

	utility_function:

	A function that takes goods as parameters and returns
a utility or returns (utility, left_over_dict). Where left_over_dict is
a dictionary of all goods that are not completely consumed

	input goods dictionary or list:

	dictionary containing the amount of input good used consumed or
a list of all goods that get completely consumed.

	Raises:

	NotEnoughGoods: This is raised when the goods are insufficient.

	Returns:

	The utility as a number. To log it see example.

Example:

def utility_function(car, cookies, bike):
 utility = car ** 0.5 * cookies ** 0.2 * bike ** 0.3
 cookies = 0 # cookies are consumed, while the other goods are not consumed
 return utility, locals()

def utility_function(cake, cookies, bonbons): # all goods get completely consumed
 utility = cake ** 0.5 * cookies ** 0.2 * bonbons ** 0.3
 return utility

self.consumption_set = {'car': 1, 'cookies': 2000, 'bike': 2}
self.consume_everything = ['car', 'cookies', 'bike']
try:
 utility = self.consume(utility_function, self.consumption_set)
except NotEnoughGoods:
 utility = self.consume(utility_function, self.consume_everything)
self.log('utility': {'u': utility})

	
create_cobb_douglas_utility_function(exponents)

	creates a Cobb-Douglas utility function

Utility_functions are than used as an argument in consume_with_utility,
predict_utility and predict_utility_and_consumption.

	Args:

	{‘input1’: exponent1, ‘input2’: exponent2 …}: dictionary
containing good names ‘input’ and correstponding exponents

	Returns:

	A utility_function that can be used in consume_with_utility etc.

Example:
self._utility_function = self.create_cobb_douglas({‘bread’ : 10, ‘milk’ : 1})
self.produce(self.plastic_utility_function, {‘bread’ : 20, ‘milk’ : 1})

 Observing agents and logging

Observing agents and logging

There are different ways of observing your agents:

	Trade Logging:

	ABCE by default logs all trade and creates a SAM or IO matrix.

	Manual in agent logging:

	An agent is instructed to log a variable with log() or a
change in a variable with log_change().

	Aggregate Data:

	aggregate() save agents possessions and variable aggregated
over a group

	Panel Data:

	panel() creates panel data for all agents in a specific
agent group at a specific point in every round. It is set in start.py

How to retrieve the Simulation results is explained in retrieval

Trade Logging

By default ABCE logs all trade and creates a social accounting matrix or
input output matrix. Because the creation of the trade log is very time consuming
you can change the default behavior in world_parameter.csv. In the column
‘trade_logging’ you can choose ‘individual’, ‘group’ or ‘off’. (Without the
apostrophes!).

Manual logging

All functions except the trade related functions can be logged. The following
code logs the production function and the change of the production from last
year:

output = self.produce(self.inputs)
self.log('production', output)
self.log_change('production', output)

Log logs dictionaries. To log your own variable:

self.log('price', {'input': 0.8, 'output': 1})

Further you can write the change of a variable between a start and an end point with:
observe_begin() and observe_end().

	
class abce.database.Database(id, agent_parameters, simulation_parameters, group, trade_logging, database, check_unchecked_msgs, expiring, perishable, resource_endowment, start_round=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The database class

	
log(action_name, data_to_log)

	With log you can write the models data. Log can save variable
states and and the working of individual functions such as production,
consumption, give, but not trade(as its handled automatically). Sending
a dictionary instead of several using several log statements with a
single variable is faster.

	Args:

	
	‘name’(string):

	the name of the current action/method the agent executes

	data_to_log:

	a variable or a dictionary with data to log in the the database

Example:

self.log('profit', profit)

self.log('employment_and_rent',
 {'employment': self['LAB'],
 'rent': self['CAP'],
 'composite': self.composite})

self.log(self.produce_use_everything())

	See also:

	
	log_nested():

	handles nested dictianaries

	log_change():

	loges the change from last round

observe_begin():

	
log_change(action_name, data_to_log)

	This command logs the change in the variable from the round before.
Important, use only once with the same action_name.

	Args:

	
	‘name’(string):

	the name of the current action/method the agent executes

	data_to_log:

	a dictianary with data for the database

Examples:

self.log_change('profit', {'money': self['money']]})
self.log_change('inputs',
 {'money': self.possessions(['money', 'gold', 'CAP', 'LAB')]})

	
observe_begin(action_name, data_to_observe)

	observe_begin and observe_end, observe the change of a variable.
observe_begin(…), takes a list of variables to be observed.
observe_end(…) writes the change in this variables into the log file

you can use nested observe_begin / observe_end combinations

	Args:

	
	‘name’(string):

	the name of the current action/method the agent executes

	data_to_log:

	a dictianary with data for the database

Example:

self.log('production', {'composite': self.composite,
 self.sector: self.final_product[self.sector]})

... different method ...

self.log('employment_and_rent', {
 'employment': self['LAB'],
 'rent': self['CAP']})

	
observe_end(action_name, data_to_observe)

	This command puts in a database called log, whatever values you
want values need to be delivered as a dictionary:

	Args:

	
	‘name’(string):

	the name of the current action/method the agent executes

	data_to_log:

	a dictianary with data for the database

Example:

self.log('production', {'composite': self.composite,
 self.sector: self.final_product[self.sector]})

... different method ...

self.log('employment_and_rent', {
 'employment': self['LAB'],
 'rent':self['CAP']})

Panel Data

	
Group.panel_log(variables=[], goods=[], func={}, len=[])

	panel_log(.) writes a panel of variables and goods
of a group of agents into the database, so that it is displayed
in the gui.

	Args:

	
	goods (list, optional):

	a list of all goods you want to track as ‘strings’

	variables (list, optional):

	a list of all variables you want to track as ‘strings’

	func (dict, optional):

	accepts lambda functions that execute functions. e.G.
func = lambda self: self.old_money - self.new_money

	len (list, optional):

	records the length of the list or dictionary with that name.

Example in start.py:

for round in simulation.next_round():
 firms.produce_and_sell()
 firms.panel_log(goods=['money', 'input'],
 variables=['production_target', 'gross_revenue'])
 households.buying()

Aggregate Data

	
Group.agg_log(variables=[], goods=[], func={}, len=[])

	agg_log(.) writes a aggregate data of variables and goods
of a group of agents into the database, so that it is displayed
in the gui.

	Args:

	
	goods (list, optional):

	a list of all goods you want to track as ‘strings’

	variables (list, optional):

	a list of all variables you want to track as ‘strings’

	func (dict, optional):

	accepts lambda functions that execute functions. e.G.
func = lambda self: self.old_money - self.new_money

	len (list, optional):

	records the length of the list or dictionary with that name.

Example in start.py:

for round in simulation.next_round():
 firms.produce_and_sell()
 firms.agg_log(goods=['money', 'input'],
 variables=['production_target', 'gross_revenue'])
 households.buying()

Retrieval of the simulation results

Agents can log their internal states and the simulation can create
panel data. abce.database.

the results are stored in a subfolder of the ./results/ folder. The
exact path is in simulation.path. So if you want to post-process your
data, you can write a function that changes in to the simulation.path
directory and manipulates the CSV files there. The tables are stored
as ‘.csv’ files which can be opened with excel.

The same data is also as a sqlite3 database ‘database.db’ available.
It can be opened by ‘sqlitebrowser’ in ubuntu.

Example:

In start.py

simulation = abce.Simulation(...)
...
simulation.run()

os.chdir(simulation.path)
firms = pandas.read_csv('aggregate_firm.csv')
...

 NotEnoughGoods Exception

NotEnoughGoods Exception

	
exception abce.NotEnoughGoods(_agent_name, good, amount_missing)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Methods raise this exception when the agent has less goods than needed

These functions (self.produce, self.offer, self.sell, self.buy)
should be encapsulated by a try except block:

try:
 self.produce(...)
except NotEnoughGoods:
 alternative_statements()

 Contracting

Contracting

Warning

Contracting is experimental and the API is not stable yet

	
class abce.Contracting

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This is a class, that allows you to create contracts. For example a
work contract. One agent commits to deliver a good or service for a set
amount of time.

For example you have a firm and a worker class. ‘Labor’ is set as a service
meaning that it lasts not longer than one round and the worker how has an
adult gets one unit of labor every round see: abce.declare_service().
The firm offers a work contract, the worker responds. Every round the
worker delivers the labor and the firm pays.:

class Firm(abce.Agent, abce.Contract)
 def request_offer(self):
 if self.round % 10 == 0:
 self.given_contract = self.request_contract('contractbuyer', 0,
 good='labor',
 quantity=5,
 price=10,
 duration=10 - 1)

 def deliver_or_pay(self):
 self.pay_contract('labor')

class Worker(abce.Agent, abce.Contract):
 def init(self):
 self.create('adult', 1)

 def accept_offer(self):
 contracts = self.get_contract_requests('labor')
 for contract in contracts:
 if contract.price < 5:
 self.accepted_contract = self.accept_contract(contract)

 def deliver_or_pay(self):
 self.deliver('labor')

Firms and workers can check, whether they have been paid/provided with
labor using the is_paid() and is_delivered() methods.

The worker can also initiate the transaction by requesting a contract with
make_contract_offer().

A contract has the following fields:

sender_group:

sender_id:

deliver_group:

deliver_id:

pay_group:

pay_id:

good:

quantity:

price:

end_date:

	makerequest:

	‘m’ for make_contract_offer and ‘r’ for request_contract

	id:

	unique number of contract

	
accept_contract(contract, quantity=None)

	Accepts the contract. The contract is completely accepted, when
the quantity is not given. Or partially when quantity is set.

Args:

	contract:

	the contract in question, received with get_contract_requests or
get_contract_offers

	quantity (optional):

	the quantity that is accepted. Defaults to all.

	
calculate_assetvalue(prices={}, parameters={}, value_functions={})

	

	
calculate_liablityvalue(prices={}, parameters={}, value_functions={})

	

	
calculate_netvalue(prices={}, parameters={}, value_functions={})

	

	
calculate_valued_assets(prices={}, parameters={}, value_functions={})

	

	
calculate_valued_liablities(prices={}, parameters={}, value_functions={})

	

	
contracts_to_deliver(good)

	

	
contracts_to_deliver_all()

	

	
contracts_to_receive(good)

	

	
contracts_to_receive_all()

	

	
deliver_contract(contract)

	delivers on a contract

	
end_contract(contract)

	

	
get_contract_offers(good, descending=False)

	Returns all contract offers and removes them. The contract
are ordered by price (ascending), when tied they are randomized.

	Args:

	
	good:

	good that underlies the contract

	descending(bool,default=False):

	False for descending True for ascending by price

	Returns:

	list of contract offers ordered by price

	
offer_good_contract(receiver_group, receiver_id, good, quantity, price, duration)

	This method offers a contract to provide a good or service to the
receiver. For a given time at a given price.

Args:

	receiver_group:

	group to receive the good

	receiver_id:

	group to receive the good

	good:

	the good or service that should be provided

	quantity:

	the quantity that should be provided

	price:

	the price of the good or service

	duration:

	the length of the contract, if duration is None or not set,
the contract has no end date.

Example:

self.given_contract = self.make_contract_offer('firm', 1, 'labor', quantity=8, price=10, duration=10 - 1)

	
pay_contract(contract)

	delivers on a contract

	
request_good_contract(receiver_group, receiver_id, good, quantity, price, duration)

	This method requests a contract to provide a good or service to the
sender. For a given time at a given price. For example a job
advertisement.

Args:

	receiver_group:

	group of the receiver

	receiver_id:

	id of the receiver

	good:

	the good or service that should be provided

	quantity:

	the quantity that should be provided

	price:

	the price of the good or service

	duration:

	the length of the contract, if duration is None or not set,
the contract has no end date.

	
was_delivered_last_round(contract)

	

	
was_delivered_this_round(contract)

	

	
was_paid_last_round(contract)

	

	
was_paid_this_round(contract)

	

 Quote

Quote

	
class abce.quote.Quote

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Quotes as opposed to trades are uncommitted offers. They can be made
even if they agent can not fullfill them. With
accept_quote() and
accept_quote_partial(),
the receiver of a quote can transform them into a trade.

	
accept_quote(quote)

	makes a commited buy or sell out of the counterparties quote. For
example, if you receive a buy quote you can accept it and a sell
offer is send to the offering party.

	Args::

	quote: buy or sell quote that is accepted

	
accept_quote_partial(quote, quantity)

	makes a commited buy or sell out of the counterparties quote

	Args::

	quote: buy or sell quote that is accepted
quantity: the quantity that is offered/requested
it should be less than propsed in the quote, but this is not enforced.

	
get_quotes(good, descending=False)

	self.get_quotes() returns all new quotes and removes them. The order
is randomized.

	Args:

	
	good:

	the good which should be retrieved

	descending(bool,default=False):

	False for descending True for ascending by price

	Returns:

	list of quotes ordered by price

Example:

quotes = self.get_quotes()

	
get_quotes_all(descending=False)

	self.get_quotes_all() returns a dictionary with all now new quotes ordered
by the good type and removes them. The order is randomized.

	Args:

	
	descending(bool,default=False):

	False for descending True for ascending by price

	Returns:

	dictionary of list of quotes ordered by price. The dictionary
itself is ordered by price.

Example:

quotes = self.get_quotes()

	
quote_buy(receiver, good=None, quantity=None, price=None)

	quotes a price to buy quantity of ‘good’ a receiver. Use None,
if you do not want to specify a value.

price (money) per unit
offers a deal without checking or committing resources

	Args:

	
	receiver_group:

	agent group name of the agent

	receiver_id:

	the agent’s id number

	‘good’:

	name of the good

	quantity:

	maximum units disposed to buy at this price

	price:

	price per unit

	
quote_sell(receiver, good=None, quantity=None, price=None)

	quotes a price to sell quantity of ‘good’ to a receiver. Use None,
if you do not want to specify a value.

price (money) per unit
offers a deal without checking or committing resources

	Args:

	
	receiver_group:

	agent group name of the agent

	receiver_id:

	the agent’s id number

	‘good’:

	name of the good

	quantity:

	maximum units disposed to sell at this price

	price:

	price per unit

	
abce.quote.Quotation(sender_group, sender_id, receiver_group, receiver_id, good, quantity, price, buysell, id)

	

 Spatial and Netlogo like Models

Spatial and Netlogo like Models

[image: _images/abcemesa.gif]

ABCE deliberately does not provide spatial representation, instead it integrates
with other packages that specialize in spatial representation.

Netlogo like models

For Netlogo like models in Python, we recommend using ABCE together with
MESA [http://mesa.readthedocs.io/en/latest/overview.html]

A simple example shows how to build a spatial model in ABCE using MESA:

On github [https://github.com/AB-CE/examples]

A wrapper file to start the graphical representation and the simulation

""" This is a simple demonstration model how to integrate ABCE and mesa.
The model and scheduler specification are taken care of in
ABCE instead of Mesa.

Based on
https://github.com/projectmesa/mesa/tree/master/examples/boltzmann_wealth_model.

For further reading, see
[Dragulescu, A and Yakovenko, V. Statistical Mechanics of Money, Income, and Wealth: A Short Survey. November, 2002](http://arxiv.org/pdf/cond-mat/0211175v1.pdf)
"""
from model import MoneyModel
from mesa.visualization.modules import CanvasGrid
from mesa.visualization.ModularVisualization import ModularServer
from mesa.visualization.modules import ChartModule

def agent_portrayal(agent):
 """ This function returns a big red circle, when an agent is wealthy and a
 small gray circle when he is not """
 portrayal = {"Shape": "circle",
 "Filled": "true",
 "r": 0.5}

 if agent.report_wealth() > 0:
 portrayal["Color"] = "red"
 portrayal["Layer"] = 0
 else:
 portrayal["Color"] = "grey"
 portrayal["Layer"] = 1
 portrayal["r"] = 0.2
 return portrayal

def main(x_size, y_size):
 """ This function sets up a canvas to graphically represent the model 'MoneyModel'
 and a chart, than it runs the server and runs the model in model.py in the browser """
 grid = CanvasGrid(agent_portrayal, x_size, y_size, 500, 500)

 chart = ChartModule([{"Label": "Gini",
 "Color": "Black"}],
 data_collector_name='datacollector')
 # the simulation uses a class DataCollector, that collects the data and
 # relays it from self.datacollector to the webpage

 server = ModularServer(MoneyModel,
 [grid, chart],
 "ABCE and MESA integrated",
 x_size * y_size, x_size, y_size)
 server.port = 8534 # change this number if address is in use
 server.launch()

if __name__ == '__main__':
 main(25, 25)

A file with the simulation itself, that can be executed also without the GUI

""" This is a simple demonstration model how to integrate ABCE and mesa.
The model and scheduler specification are taken care of in
ABCE instead of Mesa.

Based on
https://github.com/projectmesa/mesa/tree/master/examples/boltzmann_wealth_model.

For further reading, see
[Dragulescu, A and Yakovenko, V. Statistical Mechanics of Money, Income, and Wealth: A Short Survey. November, 2002](http://arxiv.org/pdf/cond-mat/0211175v1.pdf)
"""
import abce
from mesa.space import MultiGrid
from mesa.datacollection import DataCollector
from moneyagent import MoneyAgent

def compute_gini(model):
 """ calculates the index of wealth distribution form a list of numbers """
 agent_wealths = model.wealths
 x = sorted(agent_wealths)
 N = len(agent_wealths)
 B = sum(xi * (N - i) for i, xi in enumerate(x)) / (N * sum(x))
 return 1 + (1 / N) - 2 * B

class MoneyModel(abce.Simulation): # The actual simulation must inherit from Simulation
 """ The actual simulation. In order to interoperate with MESA the simulation
 needs to be encapsulated in a class. __init__ sets the simulation up. The step
 function runs one round of the simulation. """

 def __init__(self, num_agents, x_size, y_size):
 abce.Simulation.__init__(self,
 name='ABCE and MESA integrated',
 rounds=300,
 processes=1)
 # initialization of the base class. MESA integration requires
 # single processing
 self.grid = MultiGrid(x_size, y_size, True)
 self.agents = self.build_agents(MoneyAgent, 'MoneyAgent', num_agents,
 parameters={'grid': self.grid})
 # ABCE agents must inherit the MESA grid
 self.running = True
 # MESA requires this
 self.datacollector = DataCollector(
 model_reporters={"Gini": compute_gini})
 # The data collector collects a certain aggregate value so the graphical
 # components can access them

 self.wealths = [0 for _ in range(num_agents)]

 def step(self):
 """ In every step the agent's methods are executed, every set the round
 counter needs to be increased by self.next_round() """
 self.next_round()
 self.agents.do('move')
 self.agents.do('give_money')
 self.wealths = self.agents.do('report_wealth')
 # agents report there wealth in a list self.wealth
 self.datacollector.collect(self)
 # collects the data

if __name__ == '__main__':
 """ If you run model.py the simulation is executed without graphical
 representation """
 money_model = MoneyModel(1000, 20, 50)
 for r in range(100):
 print(r)
 money_model.step()

A simple agent

import abce
import random

class MoneyAgent(abce.Agent):
 """ agents move randomly on a grid and give_money to another agent in the same cell """

 def init(self, parameters, agent_parameters):
 self.grid = parameters["grid"]
 """ the grid on which agents live must be imported """
 x = random.randrange(self.grid.width)
 y = random.randrange(self.grid.height)
 self.pos = (x, y)
 self.grid.place_agent(self, (x, y))
 self.create('money', random.randrange(2, 10))

 def move(self):
 """ moves randomly """
 possible_steps = self.grid.get_neighborhood(self.pos,
 moore=True,
 include_center=False)
 new_position = random.choice(possible_steps)
 self.grid.move_agent(self, new_position)

 def give_money(self):
 """ If the agent has wealth he gives it to cellmates """
 cellmates = self.grid.get_cell_list_contents([self.pos])
 if len(cellmates) > 1:
 other = random.choice(cellmates)
 try:
 self.give(other.group, other.id, good='money', quantity=1)
 except abce.NotEnoughGoods:
 pass

 def report_wealth(self):
 return self.possession('money')

 Plugins

Plugins

ABCE has one plugin so far. The ABCESL accounting framework. If
you want to author your own plugin - its dead simple. All you
have to do is write a class that inherits from Agent in agent.py.
This class can overwrite:

def __init__(self, id, group, trade_logging, database, random_seed, num_managers,
 agent_parameters, simulation_parameters,
 check_unchecked_msgs, start_round=None):
def _begin_subround(self):
def _end_subround(self):
def _advance_round(self, time):

For example like this:

class UselessAgent(abce.Agent):
 def __init__(self, id, group, trade_logging, database, random_seed, num_managers,
 agent_parameters, simulation_parameters,
 check_unchecked_msgs, start_round=None):
 super().__init__(id, group, trade_logging,
 database, random_seed, num_managers, agent_parameters,
 simulation_parameters, check_unchecked_msgs,
 start_round):
 print("Here i begin")

 def _begin_subround(self):
 super()._begin_subround()
 print('subround begins')

 def _end_subround(self):
 super()._end_subround()
 print('subround finishes')

 def _advance_round(self, time):
 super()._advance_round(time)
 print('Super I made it to the next round')

 def ability(self):
 print("its %r o'clock" % self.time)
 print("the simulation called my ability")

Do not overwrite the init(parameters, simulation_parameters) method

 Graphical User Interface

Graphical User Interface

python -m abce.show shows the simulation results in ./result/*

	
abce.gui.gui(parameter_mask, names=None, header=None, story=None, title='Agent-Based Computational Economics', texts=None, pages=None, histograms=None, serve=False, runtime='browser-X', truncate_rounds=0, hostname='0.0.0.0', port=80, pypy=None)

	gui is a decorator that can be used to add a graphical user interface
to your simulation.

Args:

	parameter_mask:

	a dictionary with the parameter name as key and an example value
as value. Instead of the example value you can also put a tuple:
(min, default, max)

	parameters can be:

	
	
	float:

	{‘exponent’: (0.0, 0.5, 1.1)}

	
	int:

	{‘num_firms’: (0, 100, 100000)}

	dict or list, which should be strings of a dict or a
list (see example):

{‘list_to_edit’: “[‘brd’, ‘mlk’, ‘add’]”}

	
	a list of options:

	{‘several_options’: [‘opt_1’, ‘opt_2’, ‘opt_3’]}

	
	a string:

	{‘name’: ‘2x2’}

	names (optional):

	a dictionary with the parameter name as key and an alternative
text to be displayed instead.

	title:

	a string with the name of the simulation.

	header:

	html string for a bar on the top

	story:

	a dictionary with text to be displayed alongeside the graphs.
Key must be the graphs title, value can be text or html.

	pages:

	A dictinoary with title as key and links to external websites
as values, which are displayed on the right hand side.

	truncate_rounds:

	Does not display the initial x rounds, in the result graphs

	runtime:

	webbrowser to start the simulation in, can be ‘xui’ or python’s
webbrowser module’s webrowser string.

	histograms:

	specifies in which round histograms are generated. If it is
not specified rounds from the menu is used. Alternatively you can
create ‘histogram’ parameter in parameter_mask.

	serve:

	If you run this on your local machine serve must be False.
If used as a web server must be True

	hostname:

	Hostname if serve is active, defaults to ‘0.0.0.0’

	port:

	Port if serve is active, defaults to 80

	pypy:

	Name of the pypy interpreter to run ABCE super fast. e.G. ‘pypy’ or
‘pypy3’. The mainfile needs to be run with cpython e.G.:
python3 start.py

Example:

parameter_mask = {'name': 'name',
 'random_seed': None,
 'rounds': 40,
 'num_firms': (0, 100, 100000),
 'num_households': (0, 100, 100000),
 'exponent': (0.0, 0.5, 1.1),
 'several_options': ['opt_1', 'opt_2', 'opt_3']
 'list_to_edit': "['brd', 'mlk', 'add']",
 'dictionary_to_edit': "{'v1': 1, 'v2': 2}"}

names = {'num_firms': 'Number of Firms'}

@gui(parameter_mask, names,
 title="Agent-Based Computational Economics",
 serve=False)
def main(simulation_parameters):
 parameter_list = eval(simulation_parameters['list_to_edit'])
 simulation = Simulation()
 firms = simulation.build_agents(Firm,
 simulation_parameters['num_firms'])
 households = simulation.build_agents(Household,
 simulation_parameters['num_households'])

 for r in range(simulation_parameters['rounds']):
 simulation.advance_round(r)
 firms.work()
 households.buy()

if __name__ == '__main__':
 main(simulation_parameters)

	
Simulation.graphs()

	after the simulation is run, graphs() shows graphs of all data
collected in the simulation. Shows the same output as the @gui
decorator shows.

Example:

simulation = Simulation(...)
for r in range(100):
 simulation.advance_round(r)
 agents.do_something()
 ...

simulation.graphs()

 Deploying an ABCE simulation on-line

Deploying an ABCE simulation on-line

Prepare your simulation to be displayed on the web

In order for your simulation to be able to be run on the web it must be running
in the web browser. for this you need to add @gui(...) before the main function.
Further @gui needs to
be switched to serve:

...

title = "Computational Complete Economy Model on Climate Gas Reduction"
text = """ This simulation simulates climate change
"""

parameters = OrderedDict({'wage_stickiness': (0, 0.5, 1.0),
 'price_stickiness': (0, 0.5, 1.0),
 'network_weight_stickiness': (0, 0.5, 1.0),
 'carbon_tax': (0, 50.0, 80.0),
 'tax_change_time': 100,
 'rounds': 200})

@gui(parameters, text=text, title=title, serve=True)
def main(simulation_parameters):
 ...

 simulation = Simulation(processes=1)
 simulation.run()

 #simulation.graphs() This must be commented out or deleted
 simulation.finalize()

if __name__ == '__main__':
 main(parameters)

It is important to note that the main() function is not called, when start.py
is imported! if __name__ == '__main__':, means that it is not called
when start.py is imported. you can also simply delete the call of main().

@gui is the part that generates the web application and runs it.
serve must be set to True in
@gui(simulation_parameters, text=text, title=title, serve=True)

The easiest way to get your code to the server is via github. For this follow the
following instructions.
Push the simulation to github. If you are unsure what git and github is, refer to
this `gitimmersion.com<http://gitimmersion.com/>`_. If your code is not yet a git
repository change in your directory:

git init
git add --all
git commit -m"initial commit"

Go to github sign up and create a new repository. It will than display you instruction
how to push an existing repository from the command line your, they will look like this:

git remote add origin https://github.com/your_name/myproject.git
git push -u origin master

Deploy you ABCE simulation on amazon ec2 or your own Ubuntu server

create an amazon ec2 instance following `Amazon's tutorial here<http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-launch-instance_linux.html>`_

make sure that in step 7b, configure the security groups, such that you have a HTTP access. This setting allows access to port 80 (HTTP) from anywhere, and ssh access only from your IP address.

[image: _images/aws_security_group.png]

then from the console ssh into your account

ssh -i amazoninstanceweb2py.pem ubuntu@ec2-54-174-70-207.compute-1.amazonaws.com

Install the server software and ABCE requirements:

sudo pip3 install abce

copy or clone your ABCE simulation into the ~/myproject directory the easiest way is to use a git repository, but you can also use scp:

git clone https://github.com/your_name/myproject.git

start simulation with nohup:

cd myproject

nohup sudo python3 start.py &
tail -f nohup.out

The last line displays the logging messages.

If something does not work delete all files and directories that have root as user. (find them with ll)

 How to share public information?

How to share public information?

Agents can return information via a return statement at the end of a method.
The returned variables are returned to start.py as a list of the values. It
is often useful to include the agents name e.G. return (self.name, info)

The returned information can than be passed as arguments for another method:

for r in range(100):
 simulation.advance_round(r)
 agents.do_something()
 info = agents.return_info()
 agents.receive_public_information(info=info)

Currently only named function parameters are supported.

How to share a global state?

A shared global state, breaks multiprocessing, so if you want to run the simulation
on multiple cores see ‘How to share public information’. In single processing mode, you can give each agent a dictionary as a parameter. All information in this dictionary is shared.

How to access other agent’s information?

Once again this breaks multiprocessing. But you can return an agent’s self and give it as a parameter to other agents.

How to make abcEconomics fast?

There is several ways:

	Use pypy3 instead of CPython, it can be downloaded here: https://pypy.org/download.html. With pypy3 you can run the same code as with CPython, but about 30 times faster.

	If you use scipy pypy3 might not work. Use numba instead. http://numba.pydata.org

	Run the simulation with a different number of processes. With very simple agents and many messages one is optimal, with compute intensive agents number of physical processors minus one is usually most efficient. But experimenting even with more processes than physical processors might be worth it.

	Use kernprof to find which agent’s method is slowest. https://github.com/rkern/line_profiler

How to load agent-parameters from a csv / excel / sql file?

The list of parameters can be passed as agent_parameters and is passed to init, as
keyword arguments:

with open('emirati.csv', 'r') as f:
 emirati_file = csv.DictReader(f)
 emiratis_data = list(emirati_file)

emiratis = sim.build_agents(Emirati, 'emirati', agent_parameters=emiratis_data)

Note that list(file) is necessary.

 Python Module Index

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 abce	

 	
 	
 abce.agent	

 	
 	
 abce.agents	

 	
 	
 abce.agents.firm	

 	
 	
 abce.agents.household	

 	
 	
 abce.contracts	

 	
 	
 abce.contracts.contracting	

 	
 	
 abce.contracts.contracts	

 	
 	
 abce.contracts.flexiblecontracting	

 	
 	
 abce.credit	

 	
 	
 abce.database	

 	
 	
 abce.db	

 	
 	
 abce.expiringgood	

 	
 	
 abce.goods	

 	
 	
 abce.group	

 	
 	
 abce.gui	

 	
 	
 abce.gui.bokehwidget	

 	
 	
 abce.gui.dockpanel	

 	
 	
 abce.gui.form	

 	
 	
 abce.gui.loadform	

 	
 	
 abce.gui.webtext	

 	
 	
 abce.inventory	

 	
 	
 abce.messaging	

 	
 	
 abce.notenoughgoods	

 	
 	
 abce.online_variance	

 	
 	
 abce.postbox	

 	
 	
 abce.postprocess	

 	
 	
 abce.quote	

 	
 	
 abce.show	

 	
 	
 abce.trade	

 	
 	
 abce.webtext	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | W

A

 	
 	abce (module), [1]

 	abce.agent (module), [1]

 	abce.agents (module)

 	abce.agents.firm (module)

 	abce.agents.household (module), [1]

 	abce.contracts (module)

 	abce.contracts.contracting (module)

 	abce.contracts.contracts (module)

 	abce.contracts.flexiblecontracting (module)

 	abce.credit (module)

 	abce.database (module)

 	abce.db (module)

 	abce.expiringgood (module)

 	abce.goods (module)

 	abce.group (module), [1]

 	abce.gui (module)

 	abce.gui.bokehwidget (module)

 	abce.gui.dockpanel (module)

 	abce.gui.form (module)

 	abce.gui.loadform (module)

 	abce.gui.webtext (module)

 	abce.inventory (module)

 	abce.messaging (module), [1]

 	abce.notenoughgoods (module)

 	
 	abce.online_variance (module), [1]

 	abce.postbox (module)

 	abce.postprocess (module)

 	abce.quote (module)

 	abce.show (module), [1]

 	abce.trade (module), [1]

 	abce.webtext (module)

 	accept() (abce.Trade method)

 	(abce.trade.Trade method), [1]

 	accept_contract() (abce.Contracting method)

 	(abce.contracts.contracting.Contracting method)

 	(abce.contracts.flexiblecontracting.FlexibleContracting method)

 	(abce.credit.Credit method)

 	accept_quote() (abce.quote.Quote method), [1]

 	accept_quote_partial() (abce.quote.Quote method), [1]

 	Action (class in abce.group)

 	add() (abce.contracts.contracts.Contracts method)

 	advance_round() (abce.Simulation method), [1]

 	Agent (class in abce)

 	(class in abce.agent)

 	agg_log() (abce.Group method)

 	(abce.group.Group method), [1]

 	amount (abce.contracts.flexiblecontracting.Credit attribute)

 	assert_all_of_the_same_type() (in module abce.gui.form)

B

 	
 	BokehWidget (class in abce.gui.bokehwidget)

 	BokehWidget.Both (class in abce.gui.bokehwidget)

 	BokehWidget.JS (class in abce.gui.bokehwidget)

 	bound_zero() (in module abce.contracts.contracting)

 	(in module abce.contracts.flexiblecontracting)

 	(in module abce.credit)

 	
 	build_agents() (abce.Simulation method), [1]

 	buy() (abce.Trade method)

 	(abce.trade.Trade method), [1]

 	buysell (abce.quote.Quotation attribute)

C

 	
 	calculate_assetvalue() (abce.Contracting method)

 	(abce.contracts.contracting.Contracting method)

 	(abce.contracts.contracts.Contracts method)

 	(abce.contracts.flexiblecontracting.FlexibleContracting method)

 	(abce.inventory.Inventory method)

 	calculate_liablityvalue() (abce.Contracting method)

 	(abce.contracts.contracting.Contracting method)

 	(abce.contracts.contracts.Contracts method)

 	(abce.contracts.flexiblecontracting.FlexibleContracting method)

 	(abce.inventory.Inventory method)

 	calculate_netvalue() (abce.Contracting method)

 	(abce.contracts.contracting.Contracting method)

 	(abce.contracts.contracts.Contracts method)

 	(abce.contracts.flexiblecontracting.FlexibleContracting method)

 	(abce.inventory.Inventory method)

 	calculate_valued_assets() (abce.Contracting method)

 	(abce.contracts.contracting.Contracting method)

 	(abce.contracts.contracts.Contracts method)

 	(abce.contracts.flexiblecontracting.FlexibleContracting method)

 	(abce.inventory.Inventory method)

 	calculate_valued_liablities() (abce.Contracting method)

 	(abce.contracts.contracting.Contracting method)

 	(abce.contracts.contracts.Contracts method)

 	(abce.contracts.flexiblecontracting.FlexibleContracting method)

 	(abce.inventory.Inventory method)

 	Chain (class in abce.group)

 	clear() (abce.online_variance.OnlineVariance method), [1]

 	(abce.postbox.Postbox method)

 	CODE (abce.gui.bokehwidget.BokehWidget.JS attribute)

 	(abce.gui.dockpanel.DockPanel.JS attribute)

 	(abce.gui.loadform.LoadForm.JS attribute)

 	commit() (abce.inventory.Inventory method)

 	compare_with_ties() (in module abce.trade), [1]

 	consume() (abce.agents.Household method)

 	(abce.agents.household.Household method)

 	content (abce.messaging.Message attribute)

 	Contract (class in abce.contracts.contracting)

 	Contracting (class in abce)

 	(class in abce.contracts.contracting)

 	Contracts (class in abce.contracts.contracts)

 	
 	contracts_to_deliver() (abce.Contracting method)

 	(abce.contracts.contracting.Contracting method)

 	(abce.contracts.flexiblecontracting.FlexibleContracting method)

 	(abce.credit.Credit method)

 	contracts_to_deliver_all() (abce.Contracting method)

 	(abce.contracts.contracting.Contracting method)

 	(abce.contracts.flexiblecontracting.FlexibleContracting method)

 	(abce.credit.Credit method)

 	contracts_to_receive() (abce.Contracting method)

 	(abce.contracts.contracting.Contracting method)

 	(abce.contracts.flexiblecontracting.FlexibleContracting method)

 	(abce.credit.Credit method)

 	contracts_to_receive_all() (abce.Contracting method)

 	(abce.contracts.contracting.Contracting method)

 	(abce.contracts.flexiblecontracting.FlexibleContracting method)

 	(abce.credit.Credit method)

 	copy() (abce.postbox.Postbox method)

 	create() (abce.goods.Goods method)

 	(abce.inventory.Inventory method)

 	create_agent() (abce.Simulation method), [1]

 	create_agents() (abce.Group method)

 	(abce.Simulation method), [1]

 	(abce.group.Group method)

 	create_aggregated_table() (in module abce.postprocess)

 	create_ces() (abce.agents.Firm method)

 	(abce.agents.firm.Firm method)

 	create_cobb_douglas() (abce.agents.Firm method)

 	(abce.agents.firm.Firm method)

 	create_cobb_douglas_utility_function() (abce.agents.Household method)

 	(abce.agents.household.Household method)

 	create_leontief() (abce.agents.Firm method)

 	(abce.agents.firm.Firm method)

 	create_timestructured() (abce.goods.Goods method)

 	(abce.inventory.Inventory method)

 	Credit (class in abce.contracts.flexiblecontracting)

 	(class in abce.credit)

 	CSS (abce.gui.bokehwidget.BokehWidget attribute)

 	(abce.gui.dockpanel.DockPanel attribute)

 	(abce.gui.loadform.LoadForm attribute)

 	currency (abce.trade.Offer attribute), [1]

D

 	
 	Database (class in abce.database), [1]

 	(class in abce.db)

 	declare_expiring() (abce.Simulation method), [1]

 	declare_perishable() (abce.Simulation method), [1]

 	declare_round_endowment() (abce.Simulation method), [1]

 	declare_service() (abce.Simulation method), [1]

 	delete() (abce.gui.loadform.LoadForm method)

 	delete_agent() (abce.Simulation method), [1]

 	delete_agents() (abce.Group method)

 	(abce.Simulation method), [1]

 	(abce.group.Group method)

 	deliver_contract() (abce.Contracting method)

 	(abce.contracts.contracting.Contracting method)

 	(abce.contracts.flexiblecontracting.FlexibleContracting method)

 	(abce.credit.Credit method)

 	
 	deliver_good_group (abce.contracts.contracting.Contract attribute)

 	(abce.contracts.flexiblecontracting.Credit attribute)

 	deliver_good_id (abce.contracts.contracting.Contract attribute)

 	(abce.contracts.flexiblecontracting.Credit attribute)

 	delivered (abce.contracts.contracting.Contract attribute)

 	destroy() (abce.goods.Goods method)

 	(abce.inventory.Inventory method)

 	DockPanel (class in abce.gui.dockpanel)

 	DockPanel.Both (class in abce.gui.dockpanel)

 	DockPanel.JS (class in abce.gui.dockpanel)

 	DummyContracts (class in abce.agent)

E

 	
 	end_contract() (abce.Contracting method)

 	(abce.contracts.contracting.Contracting method)

 	(abce.contracts.flexiblecontracting.FlexibleContracting method)

 	(abce.credit.Credit method)

 	
 	end_date (abce.contracts.contracting.Contract attribute)

 	ExpiringGood (class in abce.expiringgood)

F

 	
 	final_quantity (abce.trade.Offer attribute), [1]

 	finalize() (abce.Simulation method), [1]

 	Firm (class in abce.agents)

 	(class in abce.agents.firm)

 	
 	FlexibleContracting (class in abce.contracts.flexiblecontracting)

 	form() (in module abce.gui.form)

G

 	
 	get_buy_offers() (abce.Trade method)

 	(abce.trade.Trade method), [1]

 	get_buy_offers_all() (abce.Trade method)

 	(abce.trade.Trade method), [1]

 	get_columns() (in module abce.postprocess)

 	get_contract_offers() (abce.Contracting method)

 	(abce.contracts.contracting.Contracting method)

 	(abce.contracts.flexiblecontracting.FlexibleContracting method)

 	(abce.credit.Credit method)

 	get_epsilon() (in module abce.trade), [1]

 	get_messages() (abce.messaging.Messaging method), [1]

 	get_messages_all() (abce.messaging.Messaging method), [1]

 	get_offers() (abce.Trade method)

 	(abce.trade.Trade method), [1]

 	get_offers_all() (abce.Trade method)

 	(abce.trade.Trade method), [1]

 	get_quotes() (abce.quote.Quote method), [1]

 	get_quotes_all() (abce.quote.Quote method), [1]

 	
 	get_sell_offers() (abce.Trade method)

 	(abce.trade.Trade method), [1]

 	get_sell_offers_all() (abce.Trade method)

 	(abce.trade.Trade method), [1]

 	get_str_columns() (in module abce.postprocess)

 	give() (abce.Trade method)

 	(abce.trade.Trade method), [1]

 	good (abce.contracts.contracting.Contract attribute)

 	(abce.quote.Quotation attribute)

 	(abce.trade.Offer attribute), [1]

 	Goods (class in abce.goods)

 	graphs() (abce.Simulation method), [1], [2]

 	(in module abce.gui)

 	group (abce.Agent attribute)

 	(abce.agent.Agent attribute)

 	Group (class in abce)

 	(class in abce.group)

 	gui() (in module abce.gui), [1]

H

 	
 	Household (class in abce.agents)

 	(class in abce.agents.household)

I

 	
 	id (abce.Agent attribute)

 	(abce.agent.Agent attribute)

 	(abce.contracts.contracting.Contract attribute)

 	(abce.quote.Quotation attribute)

 	(abce.trade.Offer attribute), [1]

 	init() (abce.Agent method)

 	(abce.agent.Agent method)

 	(abce.gui.bokehwidget.BokehWidget method)

 	(abce.gui.loadform.LoadForm method)

 	
 	interest (abce.contracts.flexiblecontracting.Credit attribute)

 	Inventory (class in abce.inventory)

 	isclose() (in module abce.inventory)

J

 	
 	join_table() (in module abce.postprocess)

L

 	
 	LoadForm (class in abce.gui.loadform)

 	LoadForm.Both (class in abce.gui.loadform)

 	
 	LoadForm.JS (class in abce.gui.loadform)

 	log() (abce.database.Database method), [1]

 	log_change() (abce.database.Database method), [1]

M

 	
 	made (abce.trade.Offer attribute), [1]

 	make_aggregation_and_write() (abce.db.Database method)

 	mean() (abce.online_variance.OnlineVariance method), [1]

 	
 	Message (class in abce.messaging)

 	Messaging (class in abce.messaging), [1]

 	myselectWidget (abce.gui.dockpanel.DockPanel.JS attribute)

N

 	
 	name (abce.Agent attribute)

 	(abce.agent.Agent attribute)

 	
 	not_reserved() (abce.goods.Goods method)

 	(abce.inventory.Inventory method)

 	NotEnoughGoods, [1], [2]

O

 	
 	observe_begin() (abce.database.Database method), [1]

 	observe_end() (abce.database.Database method), [1]

 	Offer (class in abce.trade), [1]

 	
 	Offer() (in module abce.trade)

 	offer_good_contract() (abce.Contracting method)

 	(abce.contracts.contracting.Contracting method)

 	OnlineVariance (class in abce.online_variance), [1]

P

 	
 	paid (abce.contracts.contracting.Contract attribute)

 	panel_log() (abce.Group method)

 	(abce.group.Group method), [1]

 	path (abce.Simulation attribute), [1]

 	pay_contract() (abce.Contracting method)

 	(abce.contracts.contracting.Contracting method)

 	(abce.contracts.flexiblecontracting.FlexibleContracting method)

 	(abce.credit.Credit method)

 	pay_group (abce.contracts.contracting.Contract attribute)

 	(abce.contracts.flexiblecontracting.Credit attribute)

 	pay_id (abce.contracts.contracting.Contract attribute)

 	(abce.contracts.flexiblecontracting.Credit attribute)

 	peak_buy_offers() (abce.Trade method)

 	(abce.trade.Trade method), [1]

 	peak_offers() (abce.Trade method)

 	(abce.trade.Trade method), [1]

 	
 	peak_sell_offers() (abce.Trade method)

 	(abce.trade.Trade method), [1]

 	plot (abce.gui.bokehwidget.BokehWidget attribute)

 	(abce.gui.bokehwidget.BokehWidget.JS attribute)

 	possession() (abce.contracts.contracts.Contracts method)

 	(abce.goods.Goods method)

 	(abce.inventory.Inventory method)

 	possessions() (abce.contracts.contracts.Contracts method)

 	(abce.goods.Goods method)

 	(abce.inventory.Inventory method)

 	Postbox (class in abce.postbox)

 	PostboxManager (class in abce.postbox)

 	price (abce.contracts.contracting.Contract attribute)

 	(abce.quote.Quotation attribute)

 	(abce.trade.Offer attribute), [1]

 	produce() (abce.agents.Firm method)

 	(abce.agents.firm.Firm method)

Q

 	
 	quantity (abce.contracts.contracting.Contract attribute)

 	(abce.quote.Quotation attribute)

 	(abce.trade.Offer attribute), [1]

 	Quotation (class in abce.quote)

 	
 	Quotation() (in module abce.quote)

 	Quote (class in abce.quote), [1]

 	quote_buy() (abce.quote.Quote method), [1]

 	quote_sell() (abce.quote.Quote method), [1]

R

 	
 	receive() (abce.postbox.Postbox method)

 	receiver (abce.messaging.Message attribute)

 	(abce.trade.Offer attribute), [1]

 	receiver_group (abce.quote.Quotation attribute)

 	receiver_id (abce.quote.Quotation attribute)

 	reject() (abce.Trade method)

 	(abce.trade.Trade method), [1]

 	remove() (abce.contracts.contracts.Contracts method)

 	request_credit() (abce.contracts.flexiblecontracting.FlexibleContracting method)

 	(abce.credit.Credit method)

 	
 	request_good_contract() (abce.Contracting method)

 	(abce.contracts.contracting.Contracting method)

 	(abce.contracts.flexiblecontracting.FlexibleContracting method)

 	reserve() (abce.inventory.Inventory method)

 	reserved() (abce.inventory.Inventory method)

 	rewind() (abce.inventory.Inventory method)

 	round (abce.Agent attribute)

 	(abce.agent.Agent attribute)

 	(abce.contracts.contracting.Contract attribute)

 	run() (abce.db.Database method)

S

 	
 	save_to_csv() (in module abce.postprocess)

 	selectWidget() (abce.gui.dockpanel.DockPanel method)

 	sell (abce.trade.Offer attribute), [1]

 	sell() (abce.Trade method)

 	(abce.trade.Trade method), [1]

 	send() (abce.messaging.Messaging method), [1]

 	(abce.postbox.Postbox method)

 	sender (abce.messaging.Message attribute)

 	(abce.trade.Offer attribute), [1]

 	sender_group (abce.contracts.contracting.Contract attribute)

 	(abce.contracts.flexiblecontracting.Credit attribute)

 	(abce.quote.Quotation attribute)

 	
 	sender_id (abce.contracts.contracting.Contract attribute)

 	(abce.contracts.flexiblecontracting.Credit attribute)

 	(abce.quote.Quotation attribute)

 	set_relative() (abce.gui.dockpanel.DockPanel method)

 	(abce.gui.dockpanel.DockPanel.Both method)

 	(abce.gui.dockpanel.DockPanel.JS method)

 	show() (in module abce.show)

 	Simulation (class in abce), [1]

 	status (abce.trade.Offer attribute), [1]

 	status_round (abce.trade.Offer attribute), [1]

 	std() (abce.online_variance.OnlineVariance method), [1]

 	sum() (abce.online_variance.OnlineVariance method), [1]

T

 	
 	take() (abce.Trade method)

 	(abce.trade.Trade method), [1]

 	time (abce.Agent attribute)

 	(abce.Simulation attribute), [1]

 	(abce.agent.Agent attribute)

 	
 	to_csv() (in module abce.postprocess)

 	topic (abce.messaging.Message attribute)

 	Trade (class in abce)

 	(class in abce.trade), [1]

 	transform() (abce.inventory.Inventory method)

U

 	
 	update() (abce.gui.loadform.LoadForm method)

 	(abce.online_variance.OnlineVariance method), [1]

W

 	
 	was_delivered_last_round() (abce.Contracting method)

 	(abce.contracts.contracting.Contracting method)

 	(abce.contracts.flexiblecontracting.FlexibleContracting method)

 	(abce.credit.Credit method)

 	was_delivered_this_round() (abce.Contracting method)

 	(abce.contracts.contracting.Contracting method)

 	(abce.contracts.flexiblecontracting.FlexibleContracting method)

 	(abce.credit.Credit method)

 	
 	was_paid_last_round() (abce.Contracting method)

 	(abce.contracts.contracting.Contracting method)

 	(abce.contracts.flexiblecontracting.FlexibleContracting method)

 	(abce.credit.Credit method)

 	was_paid_this_round() (abce.Contracting method)

 	(abce.contracts.contracting.Contracting method)

 	(abce.contracts.flexiblecontracting.FlexibleContracting method)

 	(abce.credit.Credit method)

 	wdg() (abce.gui.loadform.LoadForm method)

 Groups

Groups

	
class abce.Group(sim, processorgroup, group_names, agent_classes, ids=None, agent_arguments=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A group of agents. Groups of agents inherit the actions of the agents class they are created by.
When a group is called with an agent action all agents execute this actions simultaneously.
e.G. banks.buy_stocks(), then all banks buy stocks simultaneously.

agents groups are created like this:

sim = Simulation()

Agents = sim.build_agents(AgentClass, 'group_name', number=100, param1=param1, param2=param2)
Agents = sim.build_agents(AgentClass, 'group_name',
 param1=param1, param2=param2,
 agent_parameters=[dict(ap=ap1_agentA, ap=ap2_agentA),
 dict(ap=ap1_agentB, ap=ap2_agentB),
 dict(ap=ap1_agentC, ap=ap2_agentC)])

Agent groups can be combined using the + sign:

financial_institutions = banks + hedgefunds
...
financial_institutions.buy_stocks()

or:

(banks + hedgefunds).buy_stocks()

Simultaneous execution means that all agents act on the same information set and influence each other
only after this action.

individual agents in a group are addressable, you can also get subgroups (only from non combined groups):

banks[5].buy_stocks()

(banks[6,4] + hedgefunds[7,9]).buy_stocks()

agents actions can also be combined:

buying_stuff = banks.buy_stocks & hedgefunds.buy_feraries
buy_stocks()

or:

(banks.buy_stocks & hedgefunds.buy_feraries)()

	
agg_log(variables=[], goods=[], func={}, len=[])

	agg_log(.) writes a aggregate data of variables and goods
of a group of agents into the database, so that it is displayed
in the gui.

	Args:

	
	goods (list, optional):

	a list of all goods you want to track as ‘strings’

	variables (list, optional):

	a list of all variables you want to track as ‘strings’

	func (dict, optional):

	accepts lambda functions that execute functions. e.G.
func = lambda self: self.old_money - self.new_money

	len (list, optional):

	records the length of the list or dictionary with that name.

Example in start.py:

for round in simulation.next_round():
 firms.produce_and_sell()
 firms.agg_log(goods=['money', 'input'],
 variables=['production_target', 'gross_revenue'])
 households.buying()

	
create_agents(number=1, agent_parameters=None, **common_parameters)

	Create new agents to this group. Works only for non-combined groups

	Args:

	
	agent_parameters:

	List of dictionaries of agent_parameters

	number:

	number of agents to create if agent_parameters is not set

	any keyword parameter:

	parameters directly passed to agent.init methood

	Returns:

	The id of the new agent

	
delete_agents(ids)

	Remove an agents from a group, by specifying their id.

	Args:

	
	ids:

	list of ids of the agent

Example:

students.delete_agents([1, 5, 15])

	
panel_log(variables=[], goods=[], func={}, len=[])

	panel_log(.) writes a panel of variables and goods
of a group of agents into the database, so that it is displayed
in the gui.

	Args:

	
	goods (list, optional):

	a list of all goods you want to track as ‘strings’

	variables (list, optional):

	a list of all variables you want to track as ‘strings’

	func (dict, optional):

	accepts lambda functions that execute functions. e.G.
func = lambda self: self.old_money - self.new_money

	len (list, optional):

	records the length of the list or dictionary with that name.

Example in start.py:

for round in simulation.next_round():
 firms.produce_and_sell()
 firms.panel_log(goods=['money', 'input'],
 variables=['production_target', 'gross_revenue'])
 households.buying()

 Troubleshooting

Troubleshooting

	The web-gui blocks:

	When you run an IDE such as spyder sometimes the website blocks. In
order to avoid that, modify the ‘Run Setting’ and choose
‘Execute in external System Terminal’.

	Can’t find my problem:

	ask a question on https://stackoverflow.com, tagging the question as ABCE
and send an email to davoud@taghawi-nejad.de.
If its a bug or an enhancement open an issue on github:
https://github.com/DavoudTaghawiNejad/abce/issues

 abce.agents package

abce.agents package

Submodules

abce.agents.deadagent module

abce.agents.firm module

The Firm class allows you to set up firm agents with
complex or several production functions. While the simple Firm automatically
handles one technology, Firm allows you to manage several
technologies manually.

The create_* functions allow you to create a technology and assign it to
a variable. abce.Firm.produce() and similar
methods use this variable to produce with the according technology.

	
class abce.agents.firm.Firm

	Bases: object [https://docs.python.org/3/library/functions.html#object]

With self.produce a firm produces a good using production functions.
For example the following farm has a cobb-douglas production function:

	class Farm(abce.Agent, abce.Firm):

	
	def init(self):

	
	self.production_function = create_cobb_douglas({‘land’: 0.7,

	‘capital’: 0.1,
‘labor’: 0.2})

	def firming(self):

	
	self.produce(self.production_function, {{‘land’: self[‘land’],

	‘capital’: self[‘capital’],
‘labor’: 2}})

	Production functions can be auto generated with:

	
	py:meth:~abceagent.Firm.create_cobb_douglas or

	py:meth:~abceagent.Firm.create_ces or

	py:meth:~abceagent.Firm.create_leontief

or specified by hand:

A production function looks like this:

def production_function(wheels, steel, stearing_wheels, plant, machines):
 car = min(wheels / 4, steel / 10, stearing_wheels)
 wheels = 0
 steel = 0
 stearing_wheels = 0
 machine = machine * 0.9
 return locals()

This production function, produces one car for every four wheels, 10 tonnes of steel
and one stearing_wheel, it also requires one machine. Wheels, steel and stearing_wheels
are completely used. The plant is not used and the machine depreciates by 10%.production.

A production function can also produce multiple goods. The last line return locals(),
can not be omitted. It returns all variables you define in this function as a dictionary.

	
create_ces(output, gamma, multiplier=1, shares=None)

	creates a CES production function

A production function is a production process that produces the
given input goods according to the CES formula to the output
good:

\(Q = F \cdot \left[\sum_{i=1}^n a_{i}X_{i}^{\gamma}\ \right]^{\frac{1}{\gamma}}\)

Production_functions are than used as an argument in produce,
predict_vector_produce and predict_output_produce.

Args:

	‘output’:

	Name of the output good

	gamma:

	elasticity of substitution \(= s =\frac{1}{1-\gamma}\)

	multiplier:

	CES multiplier \(F\)

	shares:

	\(a_{i}\) = Share parameter of input i, \(\sum_{i=1}^n a_{i} = 1\)
when share_parameters is not specified all inputs are weighted equally and
the number of inputs is flexible.

Returns:

A production_function that can be used in produce etc.

Example:

self.stuff_production_function = create_ces('stuff', gamma=0.5, multiplier=1,
 shares={'labor': 0.25, 'stone':0.25, 'wood':0.5})
self.produce(self.stuff_production_function, {'stone' : 20, 'labor' : 1, 'wood': 12})

	
create_cobb_douglas(output, multiplier, exponents)

	creates a Cobb-Douglas production function

A production function is a production process that produces the
given input goods according to the Cobb-Douglas formula to the output
good.
Production_functions are than used as an argument in produce,
predict_vector_produce and predict_output_produce.

Args:

	‘output’:

	Name of the output good

	multiplier:

	Cobb-Douglas multiplier

	{‘input1’: exponent1, ‘input2’: exponent2 …}:

	dictionary containing good names ‘input’ and corresponding exponents

Returns:

A production_function that can be used in produce etc.

Example:

	def init(self):

	self.plastic_production_function = create_cobb_douglas(‘plastic’, {‘oil’ : 10, ‘labor’ : 1}, 0.000001)

…

	def producing(self):

	self.produce(self.plastic_production_function, {‘oil’ : 20, ‘labor’ : 1})

	
create_leontief(output, utilization_quantities)

	creates a Leontief production function

A production function is a production process that produces the
given input goods according to the Leontief formula to the output
good.
Production_functions are than used as an argument in produce,
predict_vector_produce and predict_output_produce.

Args:

	‘output’:

	Name of the output good

	multiplier:

	dictionary of multipliers it min(good1 * a, good2 * b, good3 * c…)

	{‘input1’: exponent1, ‘input2’: exponent2 …}:

	dictionary containing good names ‘input’ and corresponding exponents

Returns:

A production_function that can be used in produce etc.

Example:
self.car_production_function = create_leontief(‘car’, {‘wheel’ : 4, ‘chassi’ : 1})
self.produce(self.car_production_function, {‘wheel’ : 20, ‘chassi’ : 5})

	
produce(production_function, input_goods, results=False)

	Produces output goods given the specified amount of inputs.

Transforms the Agent’s goods specified in input goods
according to a given production_function to output goods.
Automatically changes the agent’s belonging. Raises an
exception, when the agent does not have sufficient resources.

	Args:

	
	production_function:

	A production_function produced with
py:meth:~abceagent.Firm.create_production_function,
py:meth:~abceagent.Firm.create_cobb_douglas or
py:meth:~abceagent.Firm.create_leontief

	input goods dictionary or list:

	dictionary containing the amount of input good used for the production or
a list of all goods that get completely used.

	results:

	If True returns a dictionary with the used and produced goods.

	Raises:

	
	NotEnoughGoods:

	This is raised when the goods are insufficient.

Example:

car = {'tire': 4, 'metal': 2000, 'plastic': 40}
bike = {'tire': 2, 'metal': 400, 'plastic': 20}
try:
 self.produce(car_production_function, car)
except NotEnoughGoods:
 A.produce(bike_production_function, bike)

self.produce(car_production_function, ['tire', 'metal', 'plastic']) # produces using all goods

abce.agents.firmmultitechnologies module

abce.agents.household module

The Household class extends the agent by giving him utility functions and the ability to consume goods.

	
class abce.agents.household.Household

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
consume(utility_function, input_goods)

	consumes input_goods returns utility according to the agent’s
utility function.

A utility_function, has to be set before see
py:meth:~abceagent.Household.create_cobb_douglas_utility_function or
manually; see example.

Args:

	utility_function:

	A function that takes goods as parameters and returns
a utility or returns (utility, left_over_dict). Where left_over_dict is
a dictionary of all goods that are not completely consumed

	input goods dictionary or list:

	dictionary containing the amount of input good used consumed or
a list of all goods that get completely consumed.

	Raises:

	NotEnoughGoods: This is raised when the goods are insufficient.

	Returns:

	The utility as a number. To log it see example.

Example:

def utility_function(car, cookies, bike):
 utility = car ** 0.5 * cookies ** 0.2 * bike ** 0.3
 cookies = 0 # cookies are consumed, while the other goods are not consumed
 return utility, locals()

def utility_function(cake, cookies, bonbons): # all goods get completely consumed
 utility = cake ** 0.5 * cookies ** 0.2 * bonbons ** 0.3
 return utility

self.consumption_set = {'car': 1, 'cookies': 2000, 'bike': 2}
self.consume_everything = ['car', 'cookies', 'bike']
try:
 utility = self.consume(utility_function, self.consumption_set)
except NotEnoughGoods:
 utility = self.consume(utility_function, self.consume_everything)
self.log('utility': {'u': utility})

	
create_cobb_douglas_utility_function(exponents)

	creates a Cobb-Douglas utility function

Utility_functions are than used as an argument in consume_with_utility,
predict_utility and predict_utility_and_consumption.

	Args:

	{‘input1’: exponent1, ‘input2’: exponent2 …}: dictionary
containing good names ‘input’ and correstponding exponents

	Returns:

	A utility_function that can be used in consume_with_utility etc.

Example:
self._utility_function = self.create_cobb_douglas({‘bread’ : 10, ‘milk’ : 1})
self.produce(self.plastic_utility_function, {‘bread’ : 20, ‘milk’ : 1})

Module contents

 abce.contracts package

abce.contracts package

Submodules

abce.contracts.contracting module

	
class abce.contracts.contracting.Contract(sender_group, sender_id, deliver_good_group, deliver_good_id, pay_group, pay_id, good, quantity, price, end_date, id, round)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
deliver_good_group

	

	
deliver_good_id

	

	
delivered

	

	
end_date

	

	
good

	

	
id

	

	
paid

	

	
pay_group

	

	
pay_id

	

	
price

	

	
quantity

	

	
round

	

	
sender_group

	

	
sender_id

	

	
class abce.contracts.contracting.Contracting

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This is a class, that allows you to create contracts. For example a
work contract. One agent commits to deliver a good or service for a set
amount of time.

For example you have a firm and a worker class. ‘Labor’ is set as a service
meaning that it lasts not longer than one round and the worker how has an
adult gets one unit of labor every round see: abce.declare_service().
The firm offers a work contract, the worker responds. Every round the
worker delivers the labor and the firm pays.:

class Firm(abce.Agent, abce.Contract)
 def request_offer(self):
 if self.round % 10 == 0:
 self.given_contract = self.request_contract('contractbuyer', 0,
 good='labor',
 quantity=5,
 price=10,
 duration=10 - 1)

 def deliver_or_pay(self):
 self.pay_contract('labor')

class Worker(abce.Agent, abce.Contract):
 def init(self):
 self.create('adult', 1)

 def accept_offer(self):
 contracts = self.get_contract_requests('labor')
 for contract in contracts:
 if contract.price < 5:
 self.accepted_contract = self.accept_contract(contract)

 def deliver_or_pay(self):
 self.deliver('labor')

Firms and workers can check, whether they have been paid/provided with
labor using the is_paid() and is_delivered() methods.

The worker can also initiate the transaction by requesting a contract with
make_contract_offer().

A contract has the following fields:

sender_group:

sender_id:

deliver_group:

deliver_id:

pay_group:

pay_id:

good:

quantity:

price:

end_date:

	makerequest:

	‘m’ for make_contract_offer and ‘r’ for request_contract

	id:

	unique number of contract

	
accept_contract(contract, quantity=None)

	Accepts the contract. The contract is completely accepted, when
the quantity is not given. Or partially when quantity is set.

Args:

	contract:

	the contract in question, received with get_contract_requests or
get_contract_offers

	quantity (optional):

	the quantity that is accepted. Defaults to all.

	
calculate_assetvalue(prices={}, parameters={}, value_functions={})

	

	
calculate_liablityvalue(prices={}, parameters={}, value_functions={})

	

	
calculate_netvalue(prices={}, parameters={}, value_functions={})

	

	
calculate_valued_assets(prices={}, parameters={}, value_functions={})

	

	
calculate_valued_liablities(prices={}, parameters={}, value_functions={})

	

	
contracts_to_deliver(good)

	

	
contracts_to_deliver_all()

	

	
contracts_to_receive(good)

	

	
contracts_to_receive_all()

	

	
deliver_contract(contract)

	delivers on a contract

	
end_contract(contract)

	

	
get_contract_offers(good, descending=False)

	Returns all contract offers and removes them. The contract
are ordered by price (ascending), when tied they are randomized.

	Args:

	
	good:

	good that underlies the contract

	descending(bool,default=False):

	False for descending True for ascending by price

	Returns:

	list of contract offers ordered by price

	
offer_good_contract(receiver_group, receiver_id, good, quantity, price, duration)

	This method offers a contract to provide a good or service to the
receiver. For a given time at a given price.

Args:

	receiver_group:

	group to receive the good

	receiver_id:

	group to receive the good

	good:

	the good or service that should be provided

	quantity:

	the quantity that should be provided

	price:

	the price of the good or service

	duration:

	the length of the contract, if duration is None or not set,
the contract has no end date.

Example:

self.given_contract = self.make_contract_offer('firm', 1, 'labor', quantity=8, price=10, duration=10 - 1)

	
pay_contract(contract)

	delivers on a contract

	
request_good_contract(receiver_group, receiver_id, good, quantity, price, duration)

	This method requests a contract to provide a good or service to the
sender. For a given time at a given price. For example a job
advertisement.

Args:

	receiver_group:

	group of the receiver

	receiver_id:

	id of the receiver

	good:

	the good or service that should be provided

	quantity:

	the quantity that should be provided

	price:

	the price of the good or service

	duration:

	the length of the contract, if duration is None or not set,
the contract has no end date.

	
was_delivered_last_round(contract)

	

	
was_delivered_this_round(contract)

	

	
was_paid_last_round(contract)

	

	
was_paid_this_round(contract)

	

	
abce.contracts.contracting.bound_zero(x)

	asserts that variable is above zero, where foating point imprecission is accounted for,
and than makes sure it is above 0, without floating point imprecission

abce.contracts.contracts module

	
class abce.contracts.contracts.Contracts(par={})

	Bases: set [https://docs.python.org/3/library/stdtypes.html#set]

	
add(entry)

	Add an element to a set.

This has no effect if the element is already present.

	
calculate_assetvalue(parameters, value_functions)

	

	
calculate_liablityvalue(parameters, value_functions)

	

	
calculate_netvalue(parameters, value_functions)

	

	
calculate_valued_assets(parameters, value_functions)

	

	
calculate_valued_liablities(parameters, value_functions)

	

	
possession(typ)

	

	
possessions()

	

	
remove(entry)

	Remove an element from a set; it must be a member.

If the element is not a member, raise a KeyError.

abce.contracts.flexiblecontracting module

	
class abce.contracts.flexiblecontracting.Credit(sender_group, sender_id, deliver_good_group, deliver_good_id, pay_group, pay_id, amount, interest)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
amount

	

	
deliver_good_group

	

	
deliver_good_id

	

	
interest

	

	
pay_group

	

	
pay_id

	

	
sender_group

	

	
sender_id

	

	
class abce.contracts.flexiblecontracting.FlexibleContracting

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This is a class, that allows you to create contracts. For example a
work contract. One agent commits to deliver a good or service for a set
amount of time.

For example you have a firm and a worker class. ‘Labor’ is set as a service
meaning that it lasts not longer than one round and the worker how has an
adult gets one unit of labor every round see: abce.declare_service().
The firm offers a work contract, the worker responds. Every round the
worker delivers the labor and the firm pays.:

class Firm(abce.Agent, abce.Contract)
 def request_offer(self):
 if self.round % 10 == 0:
 self.given_contract = self.request_contract('contractbuyer', 0,
 good='labor',
 quantity=5,
 price=10,
 duration=10 - 1)

 def deliver_or_pay(self):
 self.pay_contract('labor')

class Worker(abce.Agent, abce.Contract):
 def init(self):
 self.create('adult', 1)

 def accept_offer(self):
 contracts = self.get_contract_requests('labor')
 for contract in contracts:
 if contract.price < 5:
 self.accepted_contract = self.accept_contract(contract)

 def deliver_or_pay(self):
 self.deliver('labor')

Firms and workers can check, whether they have been paid/provided with
labor using the is_paid() and is_delivered() methods.

The worker can also initiate the transaction by requesting a contract with
make_contract_offer().

A contract has the following fields:

sender_group:

sender_id:

deliver_group:

deliver_id:

pay_group:

pay_id:

good:

quantity:

price:

end_date:

	makerequest:

	‘m’ for make_contract_offer and ‘r’ for request_contract

	id:

	unique number of contract

	
accept_contract(contract, quantity=None)

	Accepts the contract. The contract is completely aceppted, when
the quantity is not given. Or partially when quantity is set.

Args:

	contract:

	the contract in question, received with get_contract_requests or
get_contract_offers

	quantity (optional):

	the quantity that is accepted. Defaults to all.

	
calculate_assetvalue(prices={}, parameters={}, value_functions={})

	

	
calculate_liablityvalue(prices={}, parameters={}, value_functions={})

	

	
calculate_netvalue(prices={}, parameters={}, value_functions={})

	

	
calculate_valued_assets(prices={}, parameters={}, value_functions={})

	

	
calculate_valued_liablities(prices={}, parameters={}, value_functions={})

	

	
contracts_to_deliver(good)

	

	
contracts_to_deliver_all()

	

	
contracts_to_receive(good)

	

	
contracts_to_receive_all()

	

	
deliver_contract(contract)

	delivers on a contract

	
end_contract(contract)

	

	
get_contract_offers(good, descending=False)

	Returns all contract offers and removes them. The contract
are ordered by price (ascending), when tied they are randomized.

	Args:

	
	good:

	good that underlies the contract

	descending(bool,default=False):

	False for descending True for ascending by price

	Returns:

	list of contract offers ordered by price

	
pay_contract(contract)

	delivers on a contract

	
request_credit(receiver_group, receiver_id, amount, interest, end_date)

	This method offers a contract to provide a good or service to the
receiver. For a given time at a given price.

Args:

	receiver_group:

	group to receive the good

	receiver_id:

	group to receive the good

	deliver:

	an array or function that returns a number or dict for each round,
the tuple specifies which goods have to be delivered at
which price.

	receive:

	an array or function that returns a number or a dict for each round,
the tuple specifies which goods have to be delivered at
which price.

Example:

self.given_contract = self.make_contract_offer('firm', 1, 'labor', quantity=8, price=10, duration=10 - 1)

	
request_good_contract(receiver_group, receiver_id, good, quantity, price, duration)

	This method requests a contract to provide a good or service to the
sender. For a given time at a given price. For example a job
advertisement.

Args:

	receiver_group:

	group of the receiver

	receiver_id:

	id of the receiver

	good:

	the good or service that should be provided

	quantity:

	the quantity that should be provided

	price:

	the price of the good or service

	duration:

	the length of the contract, if duration is None or not set,
the contract has no end date.

	
was_delivered_last_round(contract)

	

	
was_delivered_this_round(contract)

	

	
was_paid_last_round(contract)

	

	
was_paid_this_round(contract)

	

	
abce.contracts.flexiblecontracting.bound_zero(x)

	asserts that variable is above zero, where foating point imprecission is accounted for,
and than makes sure it is above 0, without floating point imprecission

Module contents

 abce.gui package

abce.gui package

Submodules

abce.gui.basiclayout module

abce.gui.bokehwidget module

Simple example:

	
class abce.gui.bokehwidget.BokehWidget(**kwargs)

	Bases: flexx.ui._widget.Widget

A widget that shows a Bokeh plot object.

For Bokeh 0.12 and up. The plot’s sizing_mode property is set to
stretch_both unless it was set to something other than fixed. Other
responsive modes are ‘scale_width’, ‘scale_height’ and ‘scale_both`, which
all keep aspect ratio while being responsive in a certain direction.

	
class Both

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
CSS = '\n .flx-BokehWidget > .plotdiv {\n overflow: hidden;\n }\n '

	

	
class JS(*args)

	Bases: flexx.event._hasevents.JS

	
CODE = 'flexx.classes.BokehWidget = function () {\n _pyfunc_instantiate(this, arguments);\n}\nflexx.classes.BokehWidget.prototype = Object.create(flexx.classes.Widget.prototype);\nflexx.classes.BokehWidget.prototype._base_class = flexx.classes.Widget.prototype;\nflexx.classes.BokehWidget.prototype._class_name = "BokehWidget";\n\nflexx.classes.BokehWidget.prototype.__emitters__ = ["key_down", "key_press", "key_up", "mouse_down", "mouse_move", "mouse_up", "mouse_wheel"];\nflexx.classes.BokehWidget.prototype.__handlers__ = ["_BokehWidget__resize_plot", "_BokehWidget__set_plot_components", "_Widget__children_changed", "_Widget__container_changed", "_Widget__make_singleton_container_widgets_work", "_Widget__style_changed", "_Widget__title_changed", "_Widget__update_tabindex", "check_size"];\nflexx.classes.BokehWidget.prototype.__local_properties__ = ["parent", "plot", "size"];\nflexx.classes.BokehWidget.prototype.__properties__ = ["base_size", "children", "container", "flex", "parent", "plot", "pos", "size", "style", "tabindex", "title"];\n\nflexx.classes.BokehWidget.prototype._BokehWidget__resize_plot = function () {\n var events;\n events = Array.prototype.slice.call(arguments);\n if ((_pyfunc_truthy(this.plot) && _pyfunc_truthy(this.parent))) {\n this.plot.resize();\n }\n return null;\n};\nflexx.classes.BokehWidget.prototype._BokehWidget__resize_plot.nobind = true;\nflexx.classes.BokehWidget.prototype._BokehWidget__resize_plot._connection_strings = ["size"];\n\nflexx.classes.BokehWidget.prototype._BokehWidget__set_plot_components = function () {\n var el, ev, events, getplot;\n events = Array.prototype.slice.call(arguments);\n ev = events[events.length -1];\n this.node.innerHTML = ev.div;\n el = window.document.createElement("script");\n el.innerHTML = ev.script;\n this.node.appendChild(el);\n getplot = (function () {\n var canvas;\n this.plot = Bokeh.index[ev.id];\n canvas = this.plot.plot_canvas_view;\n canvas.reset_dimensions();\n return null;\n }).bind(this);\n\n window.setTimeout(getplot, 100);\n return null;\n};\nflexx.classes.BokehWidget.prototype._BokehWidget__set_plot_components.nobind = true;\nflexx.classes.BokehWidget.prototype._BokehWidget__set_plot_components._connection_strings = ["_plot_components"];\n\nflexx.classes.BokehWidget.prototype._plot_func = function (plot) {\n plot = (plot === undefined) ? null: plot;\n return plot;\n};\nflexx.classes.BokehWidget.prototype._plot_func.nobind = true;\nflexx.classes.BokehWidget.prototype._plot_func.default = null;\nflexx.classes.BokehWidget.prototype._plot_func.emitter_type = "Property";\n\n'

	

	
plot

	property: plot

	
init()

	Overload this to initialize a cusom widget. When called, this
widget is the current parent.

	
plot

	property: The Bokeh plot object to display. In JS, this prop
provides the corresponding backbone model.

abce.gui.dockpanel module

	
class abce.gui.dockpanel.DockPanel(**kwargs)

	Bases: flexx.ui.layouts._layout.Layout

A layout that displays its children as dockable widgets.

This is a high level layout allowing the user to layout the child
widgets as he/she likes. The title of each child is used for its
corresponding tab label.

the widget’s style property ‘location’ determines where to place the
next new widget.

	location = N, S, W, or E:

	for absolute placement.

	location = L(eft), R(ight), U(nder), O(ver) B(efore) A(fter):

	for relative placement.

	relative:

	Relative to the last widget or to the widget set with set_relative

	
class Both

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
set_relative(widget)

	The next attached widget will be placed relative to
this one

	
CSS = '\n\n div.p-TabBar {\n border: 1px solid #ccc;\n width: 20% !important;\n height: 100% !important;\n overflow-y: scroll;\n border-color: blue !important;\n }\n\n div.p-TabBar-body {\n border-color: blue !important;\n }\n\n ul.p-TabBar-content {\n display: block !important;\n background-color: blue !important;\n }\n\n span.p-TabBar-tabText {\n color: white !important;\n }\n\n span.p-TabBar-tabText:hover {\n color: black !important;\n }\n\n li.p-TabBar-tab {\n border-color: blue !important;\n background-color: blue !important;\n }\n\n li.p-TabBar-tab:hover {\n border-color: black !important;\n border: 2px solid #ccc;\n background-color: DodgerBlue !important;\n }\n\n li.p-mod-current {\n background-color: DodgerBlue !important;\n }\n div.p-TabBar-tab button {\n display: block !important;\n background-color: red !important;\n color: black;\n padding: 22px 16px;\n width: 20% !important;\n border: none;\n outline: none;\n text-align: left !important;\n cursor: pointer !important;\n transition: 0.3s;\n }\n\n div.p-StackedPanel {\n top: 0px !important;\n padding: 0px 12px;\n border: 1px solid #ccc;\n width: 80% !important;\n border-left: none !important;\n left: 20% !important;\n height: 100% !important;\n }\n '

	

	
class JS(*args)

	Bases: flexx.event._hasevents.JS

	
CODE = 'flexx.classes.DockPanel = function () {\n _pyfunc_instantiate(this, arguments);\n}\nflexx.classes.DockPanel.prototype = Object.create(flexx.classes.Layout.prototype);\nflexx.classes.DockPanel.prototype._base_class = flexx.classes.Layout.prototype;\nflexx.classes.DockPanel.prototype._class_name = "DockPanel";\n\nflexx.classes.DockPanel.prototype.__emitters__ = ["key_down", "key_press", "key_up", "mouse_down", "mouse_move", "mouse_up", "mouse_wheel"];\nflexx.classes.DockPanel.prototype.__handlers__ = ["_Widget__children_changed", "_Widget__container_changed", "_Widget__make_singleton_container_widgets_work", "_Widget__style_changed", "_Widget__title_changed", "_Widget__update_tabindex", "check_size", "myselectWidget"];\nflexx.classes.DockPanel.prototype.__local_properties__ = ["parent", "size"];\nflexx.classes.DockPanel.prototype.__properties__ = ["base_size", "children", "container", "flex", "parent", "pos", "size", "style", "tabindex", "title"];\n\nflexx.classes.DockPanel.prototype._add_child = function (widget) {\n var after, location;\n after = _pymeth_split.call(widget.style, "location:")[1];\n try {\n location = _pymeth_split.call(after, ";")[0];\n } catch(err_2) {\n if (err_2 instanceof Error && err_2.name === "TypeError") {\n location = "";\n }\n }\n location = _pymeth_upper.call(location);\n if (_pyfunc_contains("W", location)) {\n this.phosphor.insertLeft(widget.phosphor);\n } else if (_pyfunc_contains("N", location)) {\n this.phosphor.insertTop(widget.phosphor);\n } else if (_pyfunc_contains("E", location)) {\n this.phosphor.insertRight(widget.phosphor);\n } else if (_pyfunc_contains("S", location)) {\n this.phosphor.insertBottom(widget.phosphor);\n } else if ((this.relative === null)) {\n this.phosphor.insertLeft(widget.phosphor);\n } else if (_pyfunc_contains("L", location)) {\n try {\n this.phosphor.insertLeft(widget.phosphor, this.relative);\n this.lastworking = this.relative;\n } catch(err_3) {\n {\n this.phosphor.insertLeft(widget.phosphor, this.lastworking);\n }\n }\n } else if (_pyfunc_contains("O", location)) {\n try {\n this.phosphor.insertTop(widget.phosphor, this.relative);\n this.lastworking = this.relative;\n } catch(err_3) {\n {\n this.phosphor.insertTop(widget.phosphor, this.lastworking);\n }\n }\n } else if (_pyfunc_contains("R", location)) {\n try {\n this.phosphor.insertRight(widget.phosphor, this.relative);\n this.lastworking = this.relative;\n } catch(err_3) {\n {\n this.phosphor.insertRight(widget.phosphor, this.lastworking);\n }\n }\n } else if (_pyfunc_contains("U", location)) {\n try {\n this.phosphor.insertBottom(widget.phosphor, this.relative);\n this.lastworking = this.relative;\n } catch(err_3) {\n {\n this.phosphor.insertBottom(widget.phosphor, this.lastworking);\n }\n }\n } else if (_pyfunc_contains("B", location)) {\n try {\n this.phosphor.insertTabBefore(widget.phosphor, this.relative);\n this.lastworking = this.relative;\n } catch(err_3) {\n {\n this.phosphor.insertTabBefore(widget.phosphor, this.lastworking);\n }\n }\n } else if (_pyfunc_contains("A", location)) {\n try {\n this.phosphor.insertTabAfter(widget.phosphor, this.relative);\n this.lastworking = this.relative;\n } catch(err_3) {\n {\n this.phosphor.insertTabAfter(widget.phosphor, this.lastworking);\n }\n }\n } else {\n this.phosphor.insertLeft(widget.phosphor);\n }\n this.relative = widget.phosphor;\n return null;\n};\n\nflexx.classes.DockPanel.prototype._init_phosphor_and_node = function () {\n this.phosphor = new window.phosphor.dockpanel.DockPanel();\n this.node = this.phosphor.node;\n this.relative = null;\n return null;\n};\n\nflexx.classes.DockPanel.prototype.myselectWidget = function (event) {\n this.phosphor.selectWidget(event["widget"].phosphor);\n return null;\n};\nflexx.classes.DockPanel.prototype.myselectWidget.nobind = true;\nflexx.classes.DockPanel.prototype.myselectWidget._connection_strings = ["myselectWidget"];\n\nflexx.classes.DockPanel.prototype.set_relative = function (widget) {\n this.relative = widget.phosphor;\n return null;\n};\n\n'

	

	
myselectWidget

	event handler: myselectWidget

	
set_relative(widget)

	The next attached widget will be placed relative to
this one

	
selectWidget(widget)

	

	
set_relative(widget)

	The next attached widget will be placed relative to
this one

abce.gui.form module

Form to input parameters acording to the parameter_mask

	
abce.gui.form.assert_all_of_the_same_type(values)

	

	
abce.gui.form.form(parameter_mask, names)

	Gererates Form class instance with parameter_mask and names

abce.gui.loadform module

	
class abce.gui.loadform.LoadForm(**kwargs)

	Bases: flexx.ui._widget.Widget

	
class Both

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
CSS = ''

	

	
class JS(*args)

	Bases: flexx.event._hasevents.JS

	
CODE = 'flexx.classes.LoadForm = function () {\n _pyfunc_instantiate(this, arguments);\n}\nflexx.classes.LoadForm.prototype = Object.create(flexx.classes.Widget.prototype);\nflexx.classes.LoadForm.prototype._base_class = flexx.classes.Widget.prototype;\nflexx.classes.LoadForm.prototype._class_name = "LoadForm";\n\nflexx.classes.LoadForm.prototype.__emitters__ = ["key_down", "key_press", "key_up", "mouse_down", "mouse_move", "mouse_up", "mouse_wheel"];\nflexx.classes.LoadForm.prototype.__handlers__ = ["_Widget__children_changed", "_Widget__container_changed", "_Widget__make_singleton_container_widgets_work", "_Widget__style_changed", "_Widget__title_changed", "_Widget__update_tabindex", "check_size"];\nflexx.classes.LoadForm.prototype.__local_properties__ = ["parent", "size"];\nflexx.classes.LoadForm.prototype.__properties__ = ["base_size", "children", "container", "flex", "parent", "pos", "size", "style", "tabindex", "title"];\n'

	

	
delete(event)

	

	
init()

	Overload this to initialize a cusom widget. When called, this
widget is the current parent.

	
update(event)

	

	
wdg(event)

	

abce.gui.make_graphs module

abce.gui.webtext module

Describes ABCE on GUI, if no other text is given

Module contents

ABCE can be started with a gui or provide visual data output

	
abce.gui.graphs(parameter_mask=None, names=None)

	After the simulation simulation.graphs displays all logged data,
this can not be use in conjuncture with @gui.

Args:

	parameter_mask (optional):

	simulation parameters to display

	names (optional):

	a dictionary with the parameter name as key and an alternative
text to be displayed instead.

	
abce.gui.gui(parameter_mask, names=None, header=None, story=None, title='Agent-Based Computational Economics', texts=None, pages=None, histograms=None, serve=False, runtime='browser-X', truncate_rounds=0, hostname='0.0.0.0', port=80, pypy=None)

	gui is a decorator that can be used to add a graphical user interface
to your simulation.

Args:

	parameter_mask:

	a dictionary with the parameter name as key and an example value
as value. Instead of the example value you can also put a tuple:
(min, default, max)

	parameters can be:

	
	
	float:

	{‘exponent’: (0.0, 0.5, 1.1)}

	
	int:

	{‘num_firms’: (0, 100, 100000)}

	dict or list, which should be strings of a dict or a
list (see example):

{‘list_to_edit’: “[‘brd’, ‘mlk’, ‘add’]”}

	
	a list of options:

	{‘several_options’: [‘opt_1’, ‘opt_2’, ‘opt_3’]}

	
	a string:

	{‘name’: ‘2x2’}

	names (optional):

	a dictionary with the parameter name as key and an alternative
text to be displayed instead.

	title:

	a string with the name of the simulation.

	header:

	html string for a bar on the top

	story:

	a dictionary with text to be displayed alongeside the graphs.
Key must be the graphs title, value can be text or html.

	pages:

	A dictinoary with title as key and links to external websites
as values, which are displayed on the right hand side.

	truncate_rounds:

	Does not display the initial x rounds, in the result graphs

	runtime:

	webbrowser to start the simulation in, can be ‘xui’ or python’s
webbrowser module’s webrowser string.

	histograms:

	specifies in which round histograms are generated. If it is
not specified rounds from the menu is used. Alternatively you can
create ‘histogram’ parameter in parameter_mask.

	serve:

	If you run this on your local machine serve must be False.
If used as a web server must be True

	hostname:

	Hostname if serve is active, defaults to ‘0.0.0.0’

	port:

	Port if serve is active, defaults to 80

	pypy:

	Name of the pypy interpreter to run ABCE super fast. e.G. ‘pypy’ or
‘pypy3’. The mainfile needs to be run with cpython e.G.:
python3 start.py

Example:

parameter_mask = {'name': 'name',
 'random_seed': None,
 'rounds': 40,
 'num_firms': (0, 100, 100000),
 'num_households': (0, 100, 100000),
 'exponent': (0.0, 0.5, 1.1),
 'several_options': ['opt_1', 'opt_2', 'opt_3']
 'list_to_edit': "['brd', 'mlk', 'add']",
 'dictionary_to_edit': "{'v1': 1, 'v2': 2}"}

names = {'num_firms': 'Number of Firms'}

@gui(parameter_mask, names,
 title="Agent-Based Computational Economics",
 serve=False)
def main(simulation_parameters):
 parameter_list = eval(simulation_parameters['list_to_edit'])
 simulation = Simulation()
 firms = simulation.build_agents(Firm,
 simulation_parameters['num_firms'])
 households = simulation.build_agents(Household,
 simulation_parameters['num_households'])

 for r in range(simulation_parameters['rounds']):
 simulation.advance_round(r)
 firms.work()
 households.buy()

if __name__ == '__main__':
 main(simulation_parameters)

 abce package

abce package

Subpackages

	abce.agents package
	Submodules

	abce.agents.deadagent module

	abce.agents.firm module

	abce.agents.firmmultitechnologies module

	abce.agents.household module

	Module contents

	abce.contracts package
	Submodules

	abce.contracts.contracting module

	abce.contracts.contracts module

	abce.contracts.flexiblecontracting module

	Module contents

	abce.gui package
	Submodules

	abce.gui.basiclayout module

	abce.gui.bokehwidget module

	abce.gui.dockpanel module

	abce.gui.form module

	abce.gui.loadform module

	abce.gui.make_graphs module

	abce.gui.webtext module

	Module contents

Submodules

abce.agent module

The abce.Agent class is the basic class for creating your agents.
It automatically handles the possession of goods of an agent. In order to
produce/transforme goods you also need to subclass the abce.Firm or
to create a consumer the abce.Household.

For detailed documentation on:

Trading, see Trade

Logging and data creation, see Database.

Messaging between agents, see Messaging.

	
class abce.agent.Agent(id, agent_parameters, simulation_parameters, group, trade_logging, database, check_unchecked_msgs, expiring, perishable, resource_endowment, start_round=None)

	Bases: abce.database.Database, abce.trade.Trade, abce.messaging.Messaging, abce.goods.Goods

Every agent has to inherit this class. It connects the agent to the
simulation and to other agent. The abce.Trade,
abce.Database and abce.Messaging classes are included.
An agent can also inheriting from abce.Firm,
abce.FirmMultiTechnologies or abce.Household classes.

Every method can return parameters to the simulation.

For example:

class Household(abce.Agent, abce.Household):
 def init(self, simulation_parameters, agent_parameters):
 self.num_firms = simulation_parameters['num_firms']
 self.type = agent_parameters['type']
 ...

 def selling(self):
 for i in range(self.num_firms):
 self.sell('firm', i, 'good', quantity=1, price=1)

 ...
 def return_quantity_of_good(self):
 return['good']

...

simulation = Simulation()
households = Simulation.build_agents(household, 'household',
 parameters={...},
 agent_parameters=[{'type': 'a'},
 {'type': 'b'}])
for r in range(10):
 simulation.advance_round(r)
 households.selling()
 print(households.return_quantity_of_good())

	
group = None

	self.group returns the agents group or type READ ONLY!

	
id = None

	self.id returns the agents id READ ONLY

	
init()

	This method is called when the agents are build.
It can be overwritten by the user, to initialize the agents.
Parameters are the parameters given to
abce.Simulation.build_agents().

Example:

class Student(abce.Agent):
 def init(self, rounds, age, lazy, school_size):
 self.rounds = rounds
 self.age = age
 self.lazy = lazy
 self.school_size = school_size

 def say(self):
 print('I am', self.age ' years old and go to a school
 that is ', self.school_size')

def main():
 sim = Simulation()
 students = sim.build_agents(Student, 'student',
 agent_parameters=[{'age': 12, lazy: True},
 {'age': 12, lazy: True},
 {'age': 13, lazy: False},
 {'age': 14, lazy: True}],
 rounds=50,
 school_size=990)

	
name = None

	self.name returns the agents name, which is the group name and the
id

	
round = None

	self.round is depreciated

	
time = None

	self.time, contains the time set with simulation.advance_round(time)
you can set time to anything you want an integer or
(12, 30, 21, 09, 1979) or ‘monday’

	
class abce.agent.DummyContracts

	Bases: object [https://docs.python.org/3/library/functions.html#object]

abce.compile module

abce.credit module

	
class abce.credit.Credit

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This class implements a bank credit, without a due date

	
accept_contract(contract, quantity=None)

	Accepts the contract. The contract is completely accepted, when
the quantity is not given. Or partially when quantity is set.

Args:

	contract:

	the contract in question, received with get_contract_requests or
get_contract_offers

	quantity (optional):

	the quantity that is accepted. Defaults to all.

	
contracts_to_deliver(good)

	

	
contracts_to_deliver_all()

	

	
contracts_to_receive(good)

	

	
contracts_to_receive_all()

	

	
deliver_contract(contract)

	delivers on a contract

	
end_contract(contract)

	

	
get_contract_offers(good, descending=False)

	Returns all contract offers and removes them. The contract
are ordered by price (ascending), when tied they are randomized.

	Args:

	
	good:

	good that underlies the contract

	descending(bool,default=False):

	False for descending True for ascending by price

	Returns:

	list of contract offers ordered by price

	
pay_contract(contract)

	delivers on a contract

	
request_credit(receiver_group, receiver_id, quantity, interest)

	This method offers a contract to provide a good or service to the
receiver. For a given time at a given price.

Args:

	receiver_group:

	group to receive the good

	receiver_id:

	group to receive the good

	quantity:

	original amount to be borrowed

	interest:

	period interest

	
was_delivered_last_round(contract)

	

	
was_delivered_this_round(contract)

	

	
was_paid_last_round(contract)

	

	
was_paid_this_round(contract)

	

	
abce.credit.bound_zero(x)

	asserts that variable is above zero, where foating point imprecission is accounted for,
and than makes sure it is above 0, without floating point imprecission

abce.database module

The abceagent.Agent class is the basic class for creating your agent.
It automatically handles the
possession of goods of an agent. In order to produce/transforme goods you
need to also subclass the abceagent.Firm [1]_ or to create a
consumer the abceagent.Household.

For detailed documentation on:

	Trading:

	see abceagent.Trade

	Logging and data creation:

	see abceagent.Database and simulation_results

	Messaging between agents:

	see abceagent.Messaging.

	
exception abce.NotEnoughGoods(_agent_name, good, amount_missing)

	Methods raise this exception when the agent has less goods than needed

These functions (self.produce, self.offer, self.sell, self.buy)
should be encapsulated by a try except block:

try:
 self.produce(...)
except NotEnoughGoods:
 alternative_statements()

	1

	or abceagent.FirmMultiTechnologies for complex technologies.

	
class abce.database.Database(id, agent_parameters, simulation_parameters, group, trade_logging, database, check_unchecked_msgs, expiring, perishable, resource_endowment, start_round=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The database class

	
log(action_name, data_to_log)

	With log you can write the models data. Log can save variable
states and and the working of individual functions such as production,
consumption, give, but not trade(as its handled automatically). Sending
a dictionary instead of several using several log statements with a
single variable is faster.

	Args:

	
	‘name’(string):

	the name of the current action/method the agent executes

	data_to_log:

	a variable or a dictionary with data to log in the the database

Example:

self.log('profit', profit)

self.log('employment_and_rent',
 {'employment': self['LAB'],
 'rent': self['CAP'],
 'composite': self.composite})

self.log(self.produce_use_everything())

	See also:

	
	log_nested():

	handles nested dictianaries

	log_change():

	loges the change from last round

observe_begin():

	
log_change(action_name, data_to_log)

	This command logs the change in the variable from the round before.
Important, use only once with the same action_name.

	Args:

	
	‘name’(string):

	the name of the current action/method the agent executes

	data_to_log:

	a dictianary with data for the database

Examples:

self.log_change('profit', {'money': self['money']]})
self.log_change('inputs',
 {'money': self.possessions(['money', 'gold', 'CAP', 'LAB')]})

	
observe_begin(action_name, data_to_observe)

	observe_begin and observe_end, observe the change of a variable.
observe_begin(…), takes a list of variables to be observed.
observe_end(…) writes the change in this variables into the log file

you can use nested observe_begin / observe_end combinations

	Args:

	
	‘name’(string):

	the name of the current action/method the agent executes

	data_to_log:

	a dictianary with data for the database

Example:

self.log('production', {'composite': self.composite,
 self.sector: self.final_product[self.sector]})

... different method ...

self.log('employment_and_rent', {
 'employment': self['LAB'],
 'rent': self['CAP']})

	
observe_end(action_name, data_to_observe)

	This command puts in a database called log, whatever values you
want values need to be delivered as a dictionary:

	Args:

	
	‘name’(string):

	the name of the current action/method the agent executes

	data_to_log:

	a dictianary with data for the database

Example:

self.log('production', {'composite': self.composite,
 self.sector: self.final_product[self.sector]})

... different method ...

self.log('employment_and_rent', {
 'employment': self['LAB'],
 'rent':self['CAP']})

abce.db module

	
class abce.db.Database(directory, in_sok, trade_log)

	Bases: threading.Thread [https://docs.python.org/3/library/threading.html#threading.Thread]

Separate thread that receives data from in_sok and saves it into a
database

	
make_aggregation_and_write()

	

	
run()

	Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method
invokes the callable object passed to the object’s constructor as the
target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

abce.expiringgood module

	
class abce.expiringgood.ExpiringGood(duration)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A good that expires after X rounds

abce.financial module

abce.group module

	
class abce.group.Action(_agents, actions)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
class abce.group.Chain(iterables)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
class abce.group.Group(sim, processorgroup, group_names, agent_classes, ids=None, agent_arguments=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A group of agents. Groups of agents inherit the actions of the agents class they are created by.
When a group is called with an agent action all agents execute this actions simultaneously.
e.G. banks.buy_stocks(), then all banks buy stocks simultaneously.

agents groups are created like this:

sim = Simulation()

Agents = sim.build_agents(AgentClass, 'group_name', number=100, param1=param1, param2=param2)
Agents = sim.build_agents(AgentClass, 'group_name',
 param1=param1, param2=param2,
 agent_parameters=[dict(ap=ap1_agentA, ap=ap2_agentA),
 dict(ap=ap1_agentB, ap=ap2_agentB),
 dict(ap=ap1_agentC, ap=ap2_agentC)])

Agent groups can be combined using the + sign:

financial_institutions = banks + hedgefunds
...
financial_institutions.buy_stocks()

or:

(banks + hedgefunds).buy_stocks()

Simultaneous execution means that all agents act on the same information set and influence each other
only after this action.

individual agents in a group are addressable, you can also get subgroups (only from non combined groups):

banks[5].buy_stocks()

(banks[6,4] + hedgefunds[7,9]).buy_stocks()

agents actions can also be combined:

buying_stuff = banks.buy_stocks & hedgefunds.buy_feraries
buy_stocks()

or:

(banks.buy_stocks & hedgefunds.buy_feraries)()

	
agg_log(variables=[], goods=[], func={}, len=[])

	agg_log(.) writes a aggregate data of variables and goods
of a group of agents into the database, so that it is displayed
in the gui.

	Args:

	
	goods (list, optional):

	a list of all goods you want to track as ‘strings’

	variables (list, optional):

	a list of all variables you want to track as ‘strings’

	func (dict, optional):

	accepts lambda functions that execute functions. e.G.
func = lambda self: self.old_money - self.new_money

	len (list, optional):

	records the length of the list or dictionary with that name.

Example in start.py:

for round in simulation.next_round():
 firms.produce_and_sell()
 firms.agg_log(goods=['money', 'input'],
 variables=['production_target', 'gross_revenue'])
 households.buying()

	
create_agents(number=1, agent_parameters=None, **common_parameters)

	Create new agents to this group. Works only for non-combined groups

	Args:

	
	agent_parameters:

	List of dictionaries of agent_parameters

	number:

	number of agents to create if agent_parameters is not set

	any keyword parameter:

	parameters directly passed to agent.init methood

	Returns:

	The id of the new agent

	
delete_agents(ids)

	Remove an agents from a group, by specifying their id.

	Args:

	
	ids:

	list of ids of the agent

Example:

students.delete_agents([1, 5, 15])

	
panel_log(variables=[], goods=[], func={}, len=[])

	panel_log(.) writes a panel of variables and goods
of a group of agents into the database, so that it is displayed
in the gui.

	Args:

	
	goods (list, optional):

	a list of all goods you want to track as ‘strings’

	variables (list, optional):

	a list of all variables you want to track as ‘strings’

	func (dict, optional):

	accepts lambda functions that execute functions. e.G.
func = lambda self: self.old_money - self.new_money

	len (list, optional):

	records the length of the list or dictionary with that name.

Example in start.py:

for round in simulation.next_round():
 firms.produce_and_sell()
 firms.panel_log(goods=['money', 'input'],
 variables=['production_target', 'gross_revenue'])
 households.buying()

abce.inventory module

	
class abce.inventory.Inventory(name)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
calculate_assetvalue(prices)

	

	
calculate_liablityvalue(prices)

	

	
calculate_netvalue(prices)

	

	
calculate_valued_assets(prices)

	

	
calculate_valued_liablities(prices)

	

	
commit(good, committed_quantity, final_quantity)

	

	
create(good, quantity)

	creates quantity of the good out of nothing

Use with care. As long as you use it only for labor and
natural resources your model is macro-economically complete.

	Args:

	‘good’: is the name of the good
quantity: number

	
create_timestructured(good, quantity)

	creates quantity of the time structured good out of nothing.
For example:

self.creat_timestructured('capital', [10,20,30])

Creates capital. 10 units are 2 years old 20 units are 1 year old
and 30 units are new.

It can also be used with a quantity instead of an array. In this
case the amount is equally split on the years.:

self.creat_timestructured('capital', 60)

In this case 20 units are 2 years old 20 units are 1 year old
and 20 units are new.

	Args:

	
	‘good’:

	is the name of the good

	quantity:

	an arry or number

	
destroy(good, quantity=None)

	destroys quantity of the good. If quantity is omitted destroys all

Use with care.

Args:

'good':
 is the name of the good
quantity (optional):
 number

Raises:

NotEnoughGoods: when goods are insufficient

	
not_reserved(good)

	returns how much of good an agent possesses.

	Returns:

	A number.

possession does not return a dictionary for self.log(…), you can use self.possessions([…])
(plural) with self.log.

Example:

if self['money'] < 1:
 self.financial_crisis = True

if not(is_positive(self['money']):
 self.bankruptcy = True

	
possession(good)

	

	
possessions()

	returns all possessions

	
reserve(good, quantity)

	

	
reserved(good)

	returns how much of a good an agent has currently reseed to sell or buy.

	Returns:

	A number.

possession does not return a dictionary for self.log(…), you can use self.possessions([…])
(plural) with self.log.

Example:

if self['money'] < 1:
 self.financial_crisis = True

if not(is_positive(self['money']):
 self.bankruptcy = True

	
rewind(good, quantity)

	

	
transform(ingredient, unit, product, quantity=None)

	

	
abce.inventory.isclose(a, b)

	

abce.messaging module

This is the agent’s facility to send and receive messages. Messages can
either be sent to an individual with messaging.Messaging.message() or to a group with
messaging.Messaging.message_to_group(). The receiving agent can either get all messages
with messaging.Messaging.get_messages_all() or messages with a specific topic with
messaging.Messaging.get_messages().

	
class abce.messaging.Message(sender, receiver, topic, content)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
content

	

	
receiver

	

	
sender

	

	
topic

	

	
class abce.messaging.Messaging(id, agent_parameters, simulation_parameters, group, trade_logging, database, check_unchecked_msgs, expiring, perishable, resource_endowment, start_round=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
get_messages(topic='m')

	self.messages() returns all new messages send with message()
(topic=’m’). The order is randomized. self.messages(topic) returns all
messages with a topic.

A message is a string with the message. You can also retrieve the sender
by message.sender_group and message.sender_id and view the topic with
‘message.topic’. (see example)

If you are sending a float or an integer you need to access the message
content with message.content instead of only message.

! if you want to recieve a float or an int, you must msg.content

	Returns a message object:

	
	msg.content:

	returns the message content string, int, float, …

	msg:

	returns also the message content, but only as a string

	sender_group:

	returns the group name of the sender

	sender_id:

	returns the id of the sender

	topic:

	returns the topic

Example:

... agent_01 ...
self.messages('firm_01', 'potential_buyers', 'hello message')

... firm_01 - one subround later ...
potential_buyers = get_messages('potential_buyers')
for msg in potential_buyers:
 print('message: ', msg)
 print('message: ', msg.content)
 print('group name: ', msg.sender_group)
 print('sender id: ', msg.sender_id)
 print('topic: ', msg.topic)

	
get_messages_all()

	returns all messages irregardless of the topic, in a dictionary by topic

A message is a string with the message. You can also retrieve the sender
by message.sender_group and message.sender_id and view the topic with
‘message.topic’. (see example)

If you are sending a float or an integer you need to access the message
content with message.content instead of only message.

	
send(receiver, topic, content)

	sends a message to agent. Agents receive it
at the beginning of next round with get_messages() or
get_messages_all().

Args:

receiver:
 The name of the receiving agent a tuple (group, id).
 e.G. ('firm', 15)

topic:
 string, with which this message can be received

content:
 string, dictionary or class, that is send.

Example:

... household_01 ...
self.message('firm', 01, 'quote_sell', {'good':'BRD', 'quantity': 5})

... firm_01 - one subround later ...
requests = self.get_messages('quote_sell')
for req in requests:
 self.sell(req.sender, req.good, reg.quantity, self.price[req.good])

Example2:

self.message('firm', 01, 'm', "hello my message")

abce.multicurrencytrade module

abce.notenoughgoods module

This file defines the tools.NotEnoughGoods

	
exception abce.notenoughgoods.NotEnoughGoods(_agent_name, good, amount_missing)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Methods raise this exception when the agent has less goods than needed

These functions (self.produce, self.offer, self.sell, self.buy)
should be encapsulated by a try except block:

try:
 self.produce(...)
except NotEnoughGoods:
 alternative_statements()

abce.online_variance module

	
class abce.online_variance.OnlineVariance

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
clear()

	

	
mean()

	

	
std()

	

	
sum()

	

	
update(x)

	

abce.online_variance module

	
class abce.online_variance.OnlineVariance

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
clear()

	

	
mean()

	

	
std()

	

	
sum()

	

	
update(x)

	

abce.postbox module

	
class abce.postbox.Postbox

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
clear(group)

	

	
copy(group_names)

	

	
receive(group, id)

	

	
send(group, id, message)

	

	
class abce.postbox.PostboxManager(address=None, authkey=None, serializer='pickle', ctx=None)

	Bases: multiprocessing.managers.BaseManager [https://docs.python.org/3/library/multiprocessing.html#multiprocessing.managers.BaseManager]

abce.postprocess module

	
abce.postprocess.create_aggregated_table(group, dataset)

	

	
abce.postprocess.get_columns(dataset, table_name)

	

	
abce.postprocess.get_str_columns(dataset, table_name, redundant_columns)

	

	
abce.postprocess.join_table(tables, group, indexes, type_, dataset)

	

	
abce.postprocess.save_to_csv(prefix, group, dataset)

	

	
abce.postprocess.to_csv(directory, dataset)

	

abce.processorgroup module

abce.quote module

	
class abce.quote.Quotation(sender_group, sender_id, receiver_group, receiver_id, good, quantity, price, buysell, id)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
buysell

	

	
good

	

	
id

	

	
price

	

	
quantity

	

	
receiver_group

	

	
receiver_id

	

	
sender_group

	

	
sender_id

	

	
class abce.quote.Quote

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Quotes as opposed to trades are uncommitted offers. They can be made
even if they agent can not fullfill them. With
accept_quote() and
accept_quote_partial(),
the receiver of a quote can transform them into a trade.

	
accept_quote(quote)

	makes a commited buy or sell out of the counterparties quote. For
example, if you receive a buy quote you can accept it and a sell
offer is send to the offering party.

	Args::

	quote: buy or sell quote that is accepted

	
accept_quote_partial(quote, quantity)

	makes a commited buy or sell out of the counterparties quote

	Args::

	quote: buy or sell quote that is accepted
quantity: the quantity that is offered/requested
it should be less than propsed in the quote, but this is not enforced.

	
get_quotes(good, descending=False)

	self.get_quotes() returns all new quotes and removes them. The order
is randomized.

	Args:

	
	good:

	the good which should be retrieved

	descending(bool,default=False):

	False for descending True for ascending by price

	Returns:

	list of quotes ordered by price

Example:

quotes = self.get_quotes()

	
get_quotes_all(descending=False)

	self.get_quotes_all() returns a dictionary with all now new quotes ordered
by the good type and removes them. The order is randomized.

	Args:

	
	descending(bool,default=False):

	False for descending True for ascending by price

	Returns:

	dictionary of list of quotes ordered by price. The dictionary
itself is ordered by price.

Example:

quotes = self.get_quotes()

	
quote_buy(receiver, good=None, quantity=None, price=None)

	quotes a price to buy quantity of ‘good’ a receiver. Use None,
if you do not want to specify a value.

price (money) per unit
offers a deal without checking or committing resources

	Args:

	
	receiver_group:

	agent group name of the agent

	receiver_id:

	the agent’s id number

	‘good’:

	name of the good

	quantity:

	maximum units disposed to buy at this price

	price:

	price per unit

	
quote_sell(receiver, good=None, quantity=None, price=None)

	quotes a price to sell quantity of ‘good’ to a receiver. Use None,
if you do not want to specify a value.

price (money) per unit
offers a deal without checking or committing resources

	Args:

	
	receiver_group:

	agent group name of the agent

	receiver_id:

	the agent’s id number

	‘good’:

	name of the good

	quantity:

	maximum units disposed to sell at this price

	price:

	price per unit

abce.show module

python -m abce.show shows the simulation results in ./result/*

	
abce.show.show()

	

abce.trade module

The abceagent.Agent class is the basic class for creating your agent. It
automatically handles the possession of goods of an agent. In order to produce/transform
goods you need to also subclass the abceagent.Firm [1]_ or to create a consumer
the abceagent.Household.

For detailed documentation on:

	Trading:

	see abceagent.Trade

	Logging and data creation:

	see abceagent.Database and simulation_results

	Messaging between agents:

	see abceagent.Messaging.

	1

	or abceagent.FirmMultiTechnologies for simulations with complex technologies.

	
class abce.trade.Offer(sender, receiver, good, quantity, price, currency, sell, id, made)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
currency

	

	
final_quantity

	

	
good

	

	
id

	

	
made

	

	
price

	

	
quantity

	

	
receiver

	

	
sell

	

	
sender

	

	
status

	

	
status_round

	

	
class abce.trade.Trade(id, agent_parameters, simulation_parameters, group, trade_logging, database, check_unchecked_msgs, expiring, perishable, resource_endowment, start_round=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Agents can trade with each other. The clearing of the trade is taken care
of fully by ABCE.
Selling a good works in the following way:

	An agent sends an offer. sell()

ABCE does not allow you to sell the same good twice; self.free(good) shows how much good is not reserved yet

	Next subround: An agent receives the offer get_offers(), and can
accept(), reject() or partially accept it. accept()

The good is credited and the price is deducted from the agent’s possessions.

	Next subround:

	in case of acceptance the money is automatically credited.

	in case of partial acceptance the money is credited and part of the reserved good is unblocked.

	in case of rejection the good is unblocked.

Analogously for buying: buy()

Example:

Agent 1
def sales(self):
 self.remember_trade = self.sell('Household', 0, 'cookies', quantity=5, price=self.price)

Agent 2
def receive_sale(self):
 oo = self.get_offers('cookies')
 for offer in oo:
 if offer.price < 0.3:
 try:
 self.accept(offer)
 except NotEnoughGoods:
 self.accept(offer, self['money'] / offer.price)
 else:
 self.reject(offer)

Agent 1, subround 3
def learning(self):
 offer = self.info(self.remember_trade)
 if offer.status == 'reject':
 self.price *= .9
 elif offer.status = 'accepted':
 self.price *= offer.final_quantity / offer.quantity

Example:

Agent 1
def sales(self):
 self.remember_trade = self.sell('Household', 0, 'cookies', quantity=5, price=self.price, currency='dollars')

Agent 2
def receive_sale(self):
 oo = self.get_offers('cookies')
 for offer in oo:
 if ((offer.currency == 'dollars' and offer.price < 0.3 * exchange_rate)
 or (offer.currency == 'euros' and dollars'offer.price < 0.3)):

 try:
 self.accept(offer)
 except NotEnoughGoods:
 self.accept(offer, self['money'] / offer.price)
 else:
 self.reject(offer)

If we did not implement a barter class, but one can use this class as a barter class,

	
accept(offer, quantity=-999, epsilon=1e-11)

	The buy or sell offer is accepted and cleared. If no quantity is
given the offer is fully accepted; If a quantity is given the offer is
partial accepted.

Args:

	offer:

	the offer the other party made

	quantity:

	quantity to accept. If not given all is accepted

	epsilon (optional):

	if you have floating point errors, a quantity or prices is
a fraction of number to high or low. You can increase the
floating point tolerance. See troubleshooting – floating point problems

	Return:

	Returns a dictionary with the good’s quantity and the amount paid.

	
buy(receiver, good, quantity, price, currency='money', epsilon=1e-11)

	Sends a offer to buy a particular good to somebody. The money promised
is reserved. (self.free(currency), shows the not yet reserved goods)

	Args:

	
	receiver:

	The name of the receiving agent a tuple (group, id).
e.G. (‘firm’, 15)

	‘good’:

	name of the good

	quantity:

	maximum units disposed to buy at this price

	price:

	price per unit

	currency:

	is the currency of this transaction (defaults to ‘money’)

	epsilon (optional):

	if you have floating point errors, a quantity or prices is
a fraction of number to high or low. You can increase the
floating point tolerance. See troubleshooting – floating point problems

	
get_buy_offers(good, sorted=True, descending=False, shuffled=True)

	

	
get_buy_offers_all(descending=False, sorted=True)

	

	
get_offers(good, sorted=True, descending=False, shuffled=True)

	returns all offers of the ‘good’ ordered by price.

Offers that are not accepted in the same subround (def block) are
automatically rejected. However you can also manually reject.

peek_offers can be used to look at the offers without them being
rejected automatically

	Args:

	
	good:

	the good which should be retrieved

	sorted(bool, default=True):

	Whether offers are sorted by price. Faster if False.

	descending(bool, default=False):

	False for descending True for ascending by price

	shuffled(bool, default=True):

	whether the order of messages is randomized or correlated with
the ID of the agent. Setting this to False speeds up the
simulation considerably, but introduces a bias.

	Returns:

	A list of abce.trade.Offer ordered by price.

Example:

offers = get_offers('books')
for offer in offers:
 if offer.price < 50:
 self.accept(offer)
 elif offer.price < 100:
 self.accept(offer, 1)
 else:
 self.reject(offer) # optional

	
get_offers_all(descending=False, sorted=True)

	returns all offers in a dictionary, with goods as key. The in each
goods-category the goods are ordered by price. The order can be reversed
by setting descending=True

Offers that are not accepted in the same subround (def block) are
automatically rejected. However you can also manually reject.

Args:

	descending(optional):

	is a bool. False for descending True for ascending by price

	sorted(default=True):

	Whether offers are sorted by price. Faster if False.

Returns:

a dictionary with good types as keys and list of abce.trade.Offer
as values

Example:

oo = get_offers_all(descending=False)
for good_category in oo:
 print('The cheapest good of category' + good_category
 + ' is ' + good_category[0])
 for offer in oo[good_category]:
 if offer.price < 0.5:
 self.accept(offer)

for offer in oo.beer:
 print(offer.price, offer.sender)

	
get_sell_offers(good, sorted=True, descending=False, shuffled=True)

	

	
get_sell_offers_all(descending=False, sorted=True)

	

	
give(receiver, good, quantity, epsilon=1e-11)

	gives a good to another agent

	Args:

	
	receiver:

	The name of the receiving agent a tuple (group, id).
e.G. (‘firm’, 15)

	good:

	the good to be transfered

	quantity:

	amount to be transfered

	epsilon (optional):

	if you have floating point errors, a quantity or prices is
a fraction of number to high or low. You can increase the
floating point tolerance. See troubleshooting – floating point problems

Raises:

AssertionError, when good smaller than 0.

	Return:

	Dictionary, with the transfer, which can be used by self.log(…).

Example:

self.log('taxes', self.give('money': 0.05 * self['money'])

	
peak_buy_offers(good, sorted=True, descending=False, shuffled=True)

	

	
peak_offers(good, sorted=True, descending=False, shuffled=True)

	returns a peak on all offers of the ‘good’ ordered by price.
Peaked offers can not be accepted or rejected and they do not
expire.

	Args:

	
	good:

	the good which should be retrieved
descending(bool, default=False):
False for descending True for ascending by price

	Returns:

	A list of offers ordered by price

Example:

offers = get_offers('books')
for offer in offers:
 if offer.price < 50:
 self.accept(offer)
 elif offer.price < 100:
 self.accept(offer, 1)
 else:
 self.reject(offer) # optional

	
peak_sell_offers(good, sorted=True, descending=False, shuffled=True)

	

	
reject(offer)

	Rejects and offer, if the offer is subsequently accepted in the
same subround it is accepted’. Peaked offers can not be rejected.

Args:

	offer:

	the offer to be rejected

	
sell(receiver, good, quantity, price, currency='money', epsilon=1e-11)

	Sends a offer to sell a particular good to somebody. The amount promised
is reserved. (self.free(good), shows the not yet reserved goods)

	Args:

	
	receiver:

	the receiving agent

	‘good’:

	name of the good

	quantity:

	maximum units disposed to buy at this price

	price:

	price per unit

	currency:

	is the currency of this transaction (defaults to ‘money’)

	epsilon (optional):

	if you have floating point errors, a quantity or prices is
a fraction of number to high or low. You can increase the
floating point tolerance. See troubleshooting – floating point problems

	Returns:

	A reference to the offer. The offer and the offer status can
be accessed with self.info(offer_reference).

Example:

def subround_1(self):
 self.offer = self.sell('household', 1, 'cookies', quantity=5, price=0.1)

def subround_2(self):
 offer = self.info(self.offer)
 if offer.status == 'accepted':
 print(offer.final_quantity , 'cookies have be bougth')
 else:
 offer.status == 'rejected':
 print('On diet')

	
take(receiver, good, quantity, epsilon=1e-11)

	take a good from another agent. The other agent has to accept.
using self.accept()

Args:

	receiver:

	the receiving agent

	good:

	the good to be taken

	quantity:

	the quantity to be taken

	epsilon (optional):

	if you have floating point errors, a quantity or prices is
a fraction of number to high or low. You can increase the
floating point tolerance. See troubleshooting – floating point problems

	
abce.trade.compare_with_ties(x, y)

	

	
abce.trade.get_epsilon()

	

abce.trade module

The abceagent.Agent class is the basic class for creating your agent. It
automatically handles the possession of goods of an agent. In order to produce/transform
goods you need to also subclass the abceagent.Firm [1]_ or to create a consumer
the abceagent.Household.

For detailed documentation on:

	Trading:

	see abceagent.Trade

	Logging and data creation:

	see abceagent.Database and simulation_results

	Messaging between agents:

	see abceagent.Messaging.

	1

	or abceagent.FirmMultiTechnologies for simulations with complex technologies.

	
class abce.trade.Offer(sender, receiver, good, quantity, price, currency, sell, id, made)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
currency

	

	
final_quantity

	

	
good

	

	
id

	

	
made

	

	
price

	

	
quantity

	

	
receiver

	

	
sell

	

	
sender

	

	
status

	

	
status_round

	

	
class abce.trade.Trade(id, agent_parameters, simulation_parameters, group, trade_logging, database, check_unchecked_msgs, expiring, perishable, resource_endowment, start_round=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Agents can trade with each other. The clearing of the trade is taken care
of fully by ABCE.
Selling a good works in the following way:

	An agent sends an offer. sell()

ABCE does not allow you to sell the same good twice; self.free(good) shows how much good is not reserved yet

	Next subround: An agent receives the offer get_offers(), and can
accept(), reject() or partially accept it. accept()

The good is credited and the price is deducted from the agent’s possessions.

	Next subround:

	in case of acceptance the money is automatically credited.

	in case of partial acceptance the money is credited and part of the reserved good is unblocked.

	in case of rejection the good is unblocked.

Analogously for buying: buy()

Example:

Agent 1
def sales(self):
 self.remember_trade = self.sell('Household', 0, 'cookies', quantity=5, price=self.price)

Agent 2
def receive_sale(self):
 oo = self.get_offers('cookies')
 for offer in oo:
 if offer.price < 0.3:
 try:
 self.accept(offer)
 except NotEnoughGoods:
 self.accept(offer, self['money'] / offer.price)
 else:
 self.reject(offer)

Agent 1, subround 3
def learning(self):
 offer = self.info(self.remember_trade)
 if offer.status == 'reject':
 self.price *= .9
 elif offer.status = 'accepted':
 self.price *= offer.final_quantity / offer.quantity

Example:

Agent 1
def sales(self):
 self.remember_trade = self.sell('Household', 0, 'cookies', quantity=5, price=self.price, currency='dollars')

Agent 2
def receive_sale(self):
 oo = self.get_offers('cookies')
 for offer in oo:
 if ((offer.currency == 'dollars' and offer.price < 0.3 * exchange_rate)
 or (offer.currency == 'euros' and dollars'offer.price < 0.3)):

 try:
 self.accept(offer)
 except NotEnoughGoods:
 self.accept(offer, self['money'] / offer.price)
 else:
 self.reject(offer)

If we did not implement a barter class, but one can use this class as a barter class,

	
accept(offer, quantity=-999, epsilon=1e-11)

	The buy or sell offer is accepted and cleared. If no quantity is
given the offer is fully accepted; If a quantity is given the offer is
partial accepted.

Args:

	offer:

	the offer the other party made

	quantity:

	quantity to accept. If not given all is accepted

	epsilon (optional):

	if you have floating point errors, a quantity or prices is
a fraction of number to high or low. You can increase the
floating point tolerance. See troubleshooting – floating point problems

	Return:

	Returns a dictionary with the good’s quantity and the amount paid.

	
buy(receiver, good, quantity, price, currency='money', epsilon=1e-11)

	Sends a offer to buy a particular good to somebody. The money promised
is reserved. (self.free(currency), shows the not yet reserved goods)

	Args:

	
	receiver:

	The name of the receiving agent a tuple (group, id).
e.G. (‘firm’, 15)

	‘good’:

	name of the good

	quantity:

	maximum units disposed to buy at this price

	price:

	price per unit

	currency:

	is the currency of this transaction (defaults to ‘money’)

	epsilon (optional):

	if you have floating point errors, a quantity or prices is
a fraction of number to high or low. You can increase the
floating point tolerance. See troubleshooting – floating point problems

	
get_buy_offers(good, sorted=True, descending=False, shuffled=True)

	

	
get_buy_offers_all(descending=False, sorted=True)

	

	
get_offers(good, sorted=True, descending=False, shuffled=True)

	returns all offers of the ‘good’ ordered by price.

Offers that are not accepted in the same subround (def block) are
automatically rejected. However you can also manually reject.

peek_offers can be used to look at the offers without them being
rejected automatically

	Args:

	
	good:

	the good which should be retrieved

	sorted(bool, default=True):

	Whether offers are sorted by price. Faster if False.

	descending(bool, default=False):

	False for descending True for ascending by price

	shuffled(bool, default=True):

	whether the order of messages is randomized or correlated with
the ID of the agent. Setting this to False speeds up the
simulation considerably, but introduces a bias.

	Returns:

	A list of abce.trade.Offer ordered by price.

Example:

offers = get_offers('books')
for offer in offers:
 if offer.price < 50:
 self.accept(offer)
 elif offer.price < 100:
 self.accept(offer, 1)
 else:
 self.reject(offer) # optional

	
get_offers_all(descending=False, sorted=True)

	returns all offers in a dictionary, with goods as key. The in each
goods-category the goods are ordered by price. The order can be reversed
by setting descending=True

Offers that are not accepted in the same subround (def block) are
automatically rejected. However you can also manually reject.

Args:

	descending(optional):

	is a bool. False for descending True for ascending by price

	sorted(default=True):

	Whether offers are sorted by price. Faster if False.

Returns:

a dictionary with good types as keys and list of abce.trade.Offer
as values

Example:

oo = get_offers_all(descending=False)
for good_category in oo:
 print('The cheapest good of category' + good_category
 + ' is ' + good_category[0])
 for offer in oo[good_category]:
 if offer.price < 0.5:
 self.accept(offer)

for offer in oo.beer:
 print(offer.price, offer.sender)

	
get_sell_offers(good, sorted=True, descending=False, shuffled=True)

	

	
get_sell_offers_all(descending=False, sorted=True)

	

	
give(receiver, good, quantity, epsilon=1e-11)

	gives a good to another agent

	Args:

	
	receiver:

	The name of the receiving agent a tuple (group, id).
e.G. (‘firm’, 15)

	good:

	the good to be transfered

	quantity:

	amount to be transfered

	epsilon (optional):

	if you have floating point errors, a quantity or prices is
a fraction of number to high or low. You can increase the
floating point tolerance. See troubleshooting – floating point problems

Raises:

AssertionError, when good smaller than 0.

	Return:

	Dictionary, with the transfer, which can be used by self.log(…).

Example:

self.log('taxes', self.give('money': 0.05 * self['money'])

	
peak_buy_offers(good, sorted=True, descending=False, shuffled=True)

	

	
peak_offers(good, sorted=True, descending=False, shuffled=True)

	returns a peak on all offers of the ‘good’ ordered by price.
Peaked offers can not be accepted or rejected and they do not
expire.

	Args:

	
	good:

	the good which should be retrieved
descending(bool, default=False):
False for descending True for ascending by price

	Returns:

	A list of offers ordered by price

Example:

offers = get_offers('books')
for offer in offers:
 if offer.price < 50:
 self.accept(offer)
 elif offer.price < 100:
 self.accept(offer, 1)
 else:
 self.reject(offer) # optional

	
peak_sell_offers(good, sorted=True, descending=False, shuffled=True)

	

	
reject(offer)

	Rejects and offer, if the offer is subsequently accepted in the
same subround it is accepted’. Peaked offers can not be rejected.

Args:

	offer:

	the offer to be rejected

	
sell(receiver, good, quantity, price, currency='money', epsilon=1e-11)

	Sends a offer to sell a particular good to somebody. The amount promised
is reserved. (self.free(good), shows the not yet reserved goods)

	Args:

	
	receiver:

	the receiving agent

	‘good’:

	name of the good

	quantity:

	maximum units disposed to buy at this price

	price:

	price per unit

	currency:

	is the currency of this transaction (defaults to ‘money’)

	epsilon (optional):

	if you have floating point errors, a quantity or prices is
a fraction of number to high or low. You can increase the
floating point tolerance. See troubleshooting – floating point problems

	Returns:

	A reference to the offer. The offer and the offer status can
be accessed with self.info(offer_reference).

Example:

def subround_1(self):
 self.offer = self.sell('household', 1, 'cookies', quantity=5, price=0.1)

def subround_2(self):
 offer = self.info(self.offer)
 if offer.status == 'accepted':
 print(offer.final_quantity , 'cookies have be bougth')
 else:
 offer.status == 'rejected':
 print('On diet')

	
take(receiver, good, quantity, epsilon=1e-11)

	take a good from another agent. The other agent has to accept.
using self.accept()

Args:

	receiver:

	the receiving agent

	good:

	the good to be taken

	quantity:

	the quantity to be taken

	epsilon (optional):

	if you have floating point errors, a quantity or prices is
a fraction of number to high or low. You can increase the
floating point tolerance. See troubleshooting – floating point problems

	
abce.trade.compare_with_ties(x, y)

	

	
abce.trade.get_epsilon()

	

abce.webtext module

Module contents

The best way to start creating a simulation is by copying the start.py
file and other files from ‘abce/template’ in https://github.com/AB-CE/examples.

To see how to create a simulation, read ipython_tutorial.

This is a minimal template for a start.py:

from agent import Agent
from abce import *

simulation = Simulation(name='ABCE')
agents = simulation.build_agents(Agent, 'agent', 2)
for time in range(100):
 simulation.advance_round(time)
 agents.one()
 agents.two()
 agents.three()
simulation.graphs()

Note two things are important: there must be either a

graphs() or a finalize() at the end
otherwise the simulation blocks at the end.
Furthermore, every round needs to be announced using simulation.advance_round(time),
where time is any representation of time.

	
class abce.Simulation(name='abce', random_seed=None, trade_logging='off', processes=1, check_unchecked_msgs=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This is the class in which the simulation is run. Actions and agents have to
be added. Databases and resource declarations can be added. Then run
the simulation.

	Args:

	
	name:

	name of the simulation

	random_seed (optional):

	a random seed that controls the random number of the simulation

	trade_logging:

	Whether trades are logged,trade_logging can be
‘group’ (fast) or ‘individual’ (slow) or ‘off’

	processes (optional):

	The number of processes that runs in parallel. Each process hosts
a share of the agents.
By default, if this parameter is not specified, processes is all
your logical processor cores times two, using hyper-threading when available.
For easy debugging, set processes to one and the simulation is
executed without parallelization.
Sometimes it is advisable to decrease the number of processes to
the number of logical or even physical processor cores on your
computer.
For easy debugging set processes to 1, this way only one agent
runs at a time and only one error message is displayed

	check_unchecked_msgs:

	check every round that all messages have been received with get_massages or get_offers.

Example:

simulation = Simulation(name='ABCE',
 trade_logging='individual',
 processes=None)

Example for a simulation:

num_firms = 5
num_households = 2000

w = Simulation(name='ABCE',
 trade_logging='individual',
 processes=None)

w.declare_round_endowment(resource='labor_endowment',
 productivity=1,
 product='labor')

w.panel('firm', command='after_sales_before_consumption')

firms = w.build_agents(Firm, 'firm', num_firms)
households = w.build_agents(Household, 'household', num_households)

all = firms + households

for r in range(100):
 self.advance_round(r)
 households.recieve_connections()
 households.offer_capital()
 firms.buy_capital()
 firms.production()
 if r == 250:
 centralbank.intervention()
 households.buy_product()
 all.after_sales_before_consumption()
 households.consume()

w.finalize()
w.graphs()

	
advance_round(time)

	

	
build_agents(AgentClass, group_name, number=None, agent_parameters=None, **parameters)

	This method creates agents.

Args:

	AgentClass:

	is the name of the AgentClass that you imported

	group_name:

	the name of the group, as it will be used in the action list
and transactions. Should generally be lowercase of the
AgentClass.

	number:

	number of agents to be created.

	agent_parameters:

	a list of dictionaries, where each agent gets one dictionary.
The number of agents is the length of the list

	any other parameters:

	are directly passed to the agent

Example:

firms = simulation.build_agents(Firm, 'firm',
 number=simulation_parameters['num_firms'])
banks = simulation.build_agents(Bank, 'bank',
 agent_parameters=[{'name': 'UBS'},
 {'name': 'amex'},{'name': 'chase'}
 **simulation_parameters,
 loanable=True)

centralbanks = simulation.build_agents(CentralBank, 'centralbank',
 number=1,
 rounds=num_rounds)

	
create_agent(AgentClass, group_name, simulation_parameters=None, agent_parameters=None)

	

	
create_agents(AgentClass, group_name, simulation_parameters=None, agent_parameters=None, number=1)

	Creates an additional agent in an existing group during the simulation. If agents
have been deleted, their id’s are reduced.

Args:

	AgentClass:

	the class of agent to create.
(can be the same class as the creating agent)

	‘group_name’:

	the name of the group the agent should belong to. This is the
group name string e.G. 'firm', not the group variable e.G.
firms in firms = simulation.build_agents(...)

	simulation_parameters:

	a dictionary of parameters

	agent_parameters:

	List of a dictionary of parameters

	number:

	if no agent_parameters list is given the number of agents to be created can be specified

	Returns:

	id of new agent.

Example:

self.create_agent(BeerFirm, 'beerfirm',
 parameters=self.parameters,
 agent_parameters={'creation': self.time})

	
declare_expiring(good, duration)

	This type of good lasts for several rounds, but eventually
expires. For example computers would last for several years and than
become obsolete.

Args:

	good:

	the good, which expires

	duration:

	the duration before the good expires

	
declare_perishable(good)

	This good only lasts one round and then disappears. For example
labor, if the labor is not used today today’s labor is lost.
In combination with resource this is useful to model labor or capital.

In the example below a worker has an endowment of labor and capital.
Every round he can sell his labor service and rent his capital. If
he does not the labor service for this round and the rent is lost.

Args:

good:
 the good that perishes

Example::

 w.declare_perishable(good='LAB')
 w.declare_perishable(good='CAP')

	
declare_round_endowment(resource, units, product)

	At the beginning of very round the agent gets ‘units’ units
of good ‘product’ for every ‘resource’ he possesses.

Round endowments are group specific, that means when
somebody except the specified group holds them they do not produce.

Args:

resource:
 The good that you have to hold to get the other

units:
 the multiplier to get the produced good

product:
 the good that is produced if you hold the first good

groups:
 a list of agent groups, which gain the second good,
 if they hold the first one

Example:

A farmer gets a ton of harvest for every acre:

w.declare_round_endowment(resource='land',
 units=1000,
 product='wheat')

	
declare_service(human_or_other_resource, units, service)

	When the agent holds the human_or_other_resource,
he gets ‘units’ of service every round
the service can be used only with in this round.

Args:

human_or_other_resource:
 the good that needs to be in possessions to create the other
 good 'self.create('adult', 2)'
units:
 how many units of the service is available
service:
 the service that is created
groups:
 a list of agent groups that can create the service

Example:

For example if a household has two adult family members, it gets
16 hours of work

w.declare_service('adult', 8, 'work')

	
delete_agent(*ang)

	

	
delete_agents(group, ids)

	This deletes a group of agents. The model has to make sure that other
agents are notified of the death of agents in order to stop them from corresponding
with this agent. Note that if you create new agents
after deleting agents the ID’s of the deleted agents are reused.

	Args:

	
	group:

	group of the agent

	ids:

	a list of ids of the agents to be deleted in that group

	
finalize()

	simulation.finalize() must be run after each simulation. It will
write all data to disk

Example:

simulation = Simulation(...)
...
for r in range(100):
 simulation.advance_round(r)
 agents.do_something()
 ...

simulation.finalize()

	
graphs()

	after the simulation is run, graphs() shows graphs of all data
collected in the simulation. Shows the same output as the @gui
decorator shows.

Example:

simulation = Simulation(...)
for r in range(100):
 simulation.advance_round(r)
 agents.do_something()
 ...

simulation.graphs()

	
path = None

	the path variable contains the path to the simulation outcomes
it can be used to generate your own graphs as all resulting
csv files are there.

	
time = None

	Returns the current time set with simulation.advance_round(time)

 abce

abce

	abce package
	Subpackages
	abce.agents package
	Submodules

	abce.agents.deadagent module

	abce.agents.firm module

	abce.agents.firmmultitechnologies module

	abce.agents.household module

	Module contents

	abce.contracts package
	Submodules

	abce.contracts.contracting module

	abce.contracts.contracts module

	abce.contracts.flexiblecontracting module

	Module contents

	abce.gui package
	Submodules

	abce.gui.basiclayout module

	abce.gui.bokehwidget module

	abce.gui.dockpanel module

	abce.gui.form module

	abce.gui.loadform module

	abce.gui.make_graphs module

	abce.gui.webtext module

	Module contents

	Submodules

	abce.agent module

	abce.compile module

	abce.credit module

	abce.database module

	abce.db module

	abce.expiringgood module

	abce.financial module

	abce.group module

	abce.inventory module

	abce.messaging module

	abce.multicurrencytrade module

	abce.notenoughgoods module

	abce.online_variance module

	abce.online_variance module

	abce.postbox module

	abce.postprocess module

	abce.processorgroup module

	abce.quote module

	abce.show module

	abce.trade module

	abce.trade module

	abce.webtext module

	Module contents

nav.xhtml

 Table of Contents

 		
 ABCE the Agent-Based Computational Economy platform that makes modeling easier

 		
 Design

 		
 Differences to other agent-based modeling platforms

 		
 General differences to other agent-based modeling platforms

 		
 Difference to MASON

 		
 Difference to NetLogo

 		
 Difference Repast

 		
 Physical Goods

 		
 Download and Installation

 		
 Installation Ubuntu

 		
 Installation Mac

 		
 Installation Windows

 		
 Known Issues

 		
 If you have any problems with the installation

 		
 Interactive jupyter notebook Tutorial

 		
 You will learn how to:

 		
 Create Simulation & Agents

 		
 Run a simulation and advance time

 		
 Give Goods & Trade

 		
 Capturing Data and Pandas

 		
 Communication between Simulation and Agents

 		
 Walk through

 		
 start.py

 		
 A simulation with GUI

 		
 The order of actions: The order of actions within a round

 		
 Special goods and services

 		
 The agents

 		
 The Household agent

 		
 The Firm agent

 		
 The init method

 		
 The action methods and a consuming Household

 		
 Firms and Production functions

 		
 Trade

 		
 Data production

 		
 Tutorial for Plant Modeling

 		
 Examples

 		
 Concepts used in examples

 		
 Models

 		
 CCE

 		
 One sector model

 		
 Two sector model

 		
 50000 agents example

 		
 PID controllers

 		
 unit testing

 		
 The simulation in start.py

 		
 Agents

 		
 Physical goods and services

 		
 Goods

 		
 Services

