
Agent-Based Computational
Economics Documentation

Release 0.9.3b0

Davoud Taghawi-Nejad

Oct 07, 2021

Contents

1 Introduction 3
1.1 Design . 3
1.2 Download and Installation . 7
1.3 Interactive jupyter notebook Tutorial . 9
1.4 Walk through . 9
1.5 Tutorial for Plant Modeling . 16
1.6 Examples . 20
1.7 unit testing . 24

2 Simulation Programming 25
2.1 The simulation in start.py . 25
2.2 Agents . 28
2.3 Groups . 29
2.4 Physical goods and services . 31
2.5 Trader . 32
2.6 Messaging . 37
2.7 Firm and production . 37
2.8 Household and consumption . 40
2.9 Observing agents and logging . 41
2.10 Retrieval of the simulation results . 42
2.11 NotEnoughGoods Exception . 43

3 Advanced 45
3.1 Quote . 45
3.2 Spatial and Netlogo like Models . 45
3.3 Create Plugins . 48
3.4 Database Plugins . 49

4 Frequently asked Questions 51
4.1 How to share public information? . 51
4.2 How to share a global state? . 51
4.3 How to access other agent’s information? . 51
4.4 How to make abcEconomics fast? . 51
4.5 How to load agent-parameters from a csv / excel / sql file? . 52
4.6 Troubleshooting . 52

5 Indices and tables 53

i

Index 55

ii

Agent-Based Computational Economics Documentation, Release 0.9.3b0

abcEconomics is a Python based modeling platform for economic simulations. abcEconomics comes with standard
functions to simulations of trade, production and consumption. The modeler can concentrate on implementing the
logic and decisions of an agents; abcEconomics takes care of all exchange of goods and production and consumption.

In abcEconomics goods have the physical properties of
goods in reality in the sense that if agent A gives a good
to agent B, then - unlike information - agent B receives
the good and agent B does not have the good anymore.
The ownership and transformations (production or con-
sumption) of goods are automatically handled by the
platform.

abcEconomics models are programmed in standard
Python, stock functions of agents can be inherited from
archetype classes (Firm or Household). The only not-so-
standard Python is that agents are executed in parallel by
the Simulation class (in start.py).

abcEconomics allows the modeler to program agents as
ordinary Python class-objects, but run the simulation on a multi-core/processor computer. It takes no effort or inter-
vention from the modeler to run the simulation on a multi-core system. The speed advantages of using abcEconomics
with multi-processes enabled. abcEconomics are typically only observed for 10000 agents and more. Below, it might
be slower than pure python implementation. abcEconomics supports pypy3, which is approximately 30 times faster
than CPython.

abcEconomics provides two more additions to the Python language. First of all, agent groups can be executed simul-
taneously. Secondly agents can interact with each other sending messages (and goods).

The audience of abcEconomics are economists that want to model agent-based models of trade and production.

abcEconomics does support an accounting framework for financial simulations. abcFinance can be downloaded here.

abcEconomics runs on macOS, Windows, and Linux. abcEconomics runs 30x faster on pypy!

Contents 1

https://github.com/AB-CE/abcFinance

Agent-Based Computational Economics Documentation, Release 0.9.3b0

2 Contents

CHAPTER 1

Introduction

1.1 Design

abcEconomics’s first design goal is that, code can be rapidly written, to enable a modeler to quickly write down code
and quickly explore different alternatives of a model.

Execution speed is a secondary concern to the goal of rapid development. Execution speed is achieved by making use
of multiple-cores/processors and using C++ for background tasks or using pypy.

Secondly, the modeler can concentrate on programming the behavior of the agents and the specification of goods,
production and consumption function. The functions for economic simulations such as production, consumption,
trade, communication are provided and automatically performed by the platform.

Python has also been chosen as a programming language, because of it’s rich environment of standard libraries. Python
for example comes with a stock representation of agents in a spacial world, which allow the modeler to model a spatial
model.

Python is especially beginner friendly, but also easy to learn for people who already know object oriented programming
languages such as Java, C++ or even MATLAB. abcEconomics uses C++, to handle background tasks to increase
speed. Python allows simple, but fully functional, programming for economists. What is more Python is readable
even for non Python programmers.

Python is a language that lends itself to writing of code fast, because it has low overhead. In Python variables do not
have to be declared, garbage does not have to be collected and classes have no boiler-plate code.

Python, is slower than Java or C, but its reputation for slow speed is usually exaggerated. Various packages for
numerical calculations and optimization such as numpy and scipy offer the C like speed to numerical problems.
Contrary to the common belief Python is not an interpreted language. Pypy even provides a just in time complier
Python is compiled to bytecode and than executed. abcEconomics allows to parallelize the code and gain significant
speed advantage over single-threaded code, that does not make use of the speed advantage of multi-core or multi-
processor computers.

abcEconomics 0.6 supports Python 3.

For the simulated problem all agents are executed in parallel. This is achieved by randomizing the arrival of messages
and orders between sub-rounds. For example if in one sub-round all agents make offers and in the next sub-round all

3

Agent-Based Computational Economics Documentation, Release 0.9.3b0

agents receive and answer the offers, the order in which the agents receive is random, as if the agent’s in the round
before would make offers in a random order.

1.1.1 Differences to other agent-based modeling platforms

We identified several survey articles as well as a quite complete overview of agent-based modeling software
on Wikipedia. [Serenko2002], [Allan2010] [Societies2009], [Tobias2004], [Railsback2006], [abmcomparison-
Wikipedia2013]. The articles ‘Tools of the Trade’ by Madey and Nikolai [Societies2009] and ‘Survey of Agent Based
Modelling and Simulation Tools’ by Allan [Allan2010] attempt to give a complete overview of agent-based modelling
platforms/frameworks. The Madey and Nikolai paper categorizes the abm-platforms according to several categories.
(Programming Language, Type of License, Operating System and Domain). According to this article, there is only
one software platform which aims at the specific domain of economics: JASA. But JASA is a modeling platform that
aims specifically at auctions. Wikipedia [abmcomparisonWikipedia2013] lists JAMEL as an economic platform, but
JAMEL a is closed source and an non-programming platform. The ‘Survey of Agent Based Modelling and Simula-
tion Tools’ by Allan [Allan2010] draws our attention to LSD, which, as it states, is rather a system dynamic, than an
agent-based modeling platform. We conclude that there is a market for a domain specific language for economics.

While the formerly mentioned modeling platforms aim to give a complete overview, ‘Evaluation of free Java - libraries
for social scientific agent based simulation’ [Tobias2004] by Tobias and Hoffman chooses to concentrate on a smaller
number of simulation packages. Tobias and Hoffman discuss: RePast, Swarm, Quicksilver, and VSEit. We will
follow this approach and concentrate on a subset of ABM models. First as economics is a subset of social science we
dismiss all platforms that are not explicitly targeted at social science. The list of social science platforms according
to [Societies2009] Madey and Nikolai is: AgentSheets, LSD, FAMOJA, MAML, MAS-SOC, MIMOSE, NetLogo,
Repast SimBioSys, StarLogo, StarLogoT, StarLogo TNG, Sugarscape, VSEit NetLogo and Moduleco. We dismiss
some of these frameworks/platforms:

AgentSheets, because it is closed source and not ‘programable’

LSD, because it is a system dynamics rather than an agent-based modeling environment

MAML, because it does not use a standard programming language, but it is it’s own.

MAS-SOC, because we could not find it in the Internet and its documentation according to [Allan2010] is sparse.

MIMOSE, is an interesting language, but we will not analyze as it is based on a completely different programming
paradigm, functional programming, as opposed to object-oriented programming.

SimBioSys, because it has according to Allan [Allan2010] and our research a sparse documentation.

StarLogo, StarLogoT, StarLogo TNG, because they have been superseded by NetLogo

Moduleco, because it has according to Allan [Allan2010] and our research a sparse documentation. Further, it appears
not to be updated since roughly 2001

We will concentrate on the most widely used ABM frameworks/platforms: MASON, NetLogo, Repast.

1.1.2 General differences to other agent-based modeling platforms

First of all abcEconomics is domain specific, that enables it to provide the basic functions such as production, con-
sumption, trade and communication as fully automated stock methods. Because any kind of agent interaction (com-
munication and exchange of goods) is handled automatically abcEconomics, it can run the agents (virtually) parallel
and run simulations on multi-core/processor systems without any intervention by the modeler.

The second biggest difference between abcEconomics and other platforms is that abcEconomics introduces the physi-
cal good as an ontological object in the simulation. Goods can be exchanged and transformed. abcEconomics handles
these processes automatically, so that for the model a physical good behaves like a physical good and not like a mes-
sage. That means that if a good is transfered between two agents the first agent does not have this good anymore, and

4 Chapter 1. Introduction

Agent-Based Computational Economics Documentation, Release 0.9.3b0

the second agent has it now. Once, for example, two agents decide to trade a good abcEconomics makes sure that the
transaction is cleared between the two agents.

Thirdly, abcEconomics is just a scheduler that schedules the actions of the agents and a python base class that enables
the agent to produce, consume, trade and communicate. A model written in abcEconomics, therefore is standard
Python code and the modeler can make use of the complete Python language and the Python language environment.
This is a particular useful feature because Python comes with about 30.0002 publicly available packages, that could be
used in abcEconomics. Particularly useful packages are:

pybrain a neural network package

numpy a package for numerical computation

scipy a package for numerical optimization and statistical functions

sympy a package for symbolic manipulation

turtle a package for spacial representation ala NetLogo

Fourth, many frameworks such as FLAME, NetLogo, StarLogo, Ascape and SugarScape and, in a more limited sense,
Repast are designed with spacial representation in mind. For abcEconomics a spacial representation is possible, but
not a design goal. However, since agents in abcEconomics are ordinary Python objects, they can use python modules
such as python-turtle and therefore gain a spacial representation much like NetLogo. This does by no means mean
that abcEconomics could not be a good choice for a problem where the spacial position plays a role. If for example
the model has different transport costs or other properties according to the geographical position of the agents, but the
agent’s do not move or the movement does not have to be represented graphically, abcEconomics could still be a good
choice.

Difference to MASON

Masons is a single-threaded discrete event platform that is intended for simulations of social, biological and econom-
ical systems. [Luke]. Mason is a platform that was explicitly designed with the goal of running it on large platforms.
MASON distributes a large number of single threaded simulations over deferent computers or processors. abcEco-
nomics on the other hand is multi-threaded it allows to run agents in parallel. A single run of a simulation in MASON
is therefore not faster on a computing cluster than on a potent single-processor computer. abcEconomics on the other
hand uses the full capacity of multi-core/processor systems for a single simulation run. The fast execution of a model
in abcEconomics allow a different software development process, modelers can ‘try’ their models while they are de-
veloping and adjust the code until it works as desired. The different nature of both platforms make it necessary to
implement a different event scheduling system.

Mason is a discrete event platform. Events can be scheduled by the agents. abcEconomics on the other hand is
scheduled - it has global list of sub-rounds that establish the sequence of actions in every round. Each of these sub-
rounds lets a number of agents execute the same actions in parallel.

MASON, like Repast Java is based on Java, while abcEconomics is based on Python, the advantages have been
discussed before.

Difference to NetLogo

Netlogo is a multi-agent programming language, which is part of the Lisp language family. Netlogo is interpreted.
[Tisue2004] Python on the other hand is a compiled3 general programming language. Consequently it is faster than
NetLogo.

2 https://pypi.python.org/
3 Python contrary to the common believe is compiled to bytecode similar to Java’s compilation to bytecode.

1.1. Design 5

https://pypi.python.org/

Agent-Based Computational Economics Documentation, Release 0.9.3b0

Netlogo’s most prominent feature are the turtle agents. To have turtle agents in abcEconomics, Python’s turtle library
has to be used. The graphical representation of models is therefore not part of abcEconomics, but of Python itself, but
needs to be included by the modeler.

One difference between Netlogo and abcEconomics is that it has the concept of the observer agent, while in abcEco-
nomics the simulation is controlled by the simulation process.

Difference Repast

Repast is a modeling environment for social science. It was originally conceived as a Java recoding of SWARM.
[Collier] [NORTH2005] Repast comes in several flavors: Java, .Net, and a Python like programming language. Repast
has been superseded by Repast Symphony which maintains all functionality, but is limited to Java. Symphony has a
point and click interface for simple models. [NORTH2005a]

Repast does allow static and dynamic scheduling. [Collier]. abcEconomics, does not (yet) allow for dynamic schedul-
ing. In abcEconomics, the order of actions - or in abcEconomics language order of sub-rounds - is fixed and is repeated
for every round. This however is not as restrictive as it sounds, because in any sub-round an agent could freely decide
what he does.

The advantage of the somehow more limited implementation of abcEconomics is ease of use. While in Repast it is
necessary to subclass the scheduler in abcEconomics it is sufficient to specify the schedule and pass it the Simulation
class.

Repast is vast, it contains 210 classes in 9 packages [Collier]. abcEconomics, thanks to its limited scope and Python,
has only 6 classes visible to the modeler in a single package.

1.1.3 Physical Goods

Physical goods are at the heart of almost every economic model. The core feature and main difference to other ABM
platforms is the implementation of physical goods. In contrast to information or messages, sharing a good means
having less of it. In other words if agent A gives a good to agent B then agent A does not have this good anymore. On
of the major strength of abcEconomics is that this is automatically handled.

In abcEconomics goods can be created, destroyed, traded, given or changed through production and consumption. All
these functions are implemented in abcEconomics and can be inherited by an agent as a method. These functions are
automatically handled by abcEconomics upon decision from the modeler.

Every agent in abcEconomics must inherit from the abcEconomics.Agent class. This gives the agent a couple of stock
methods: create, destroy, trade and give. Create and destroy create or destroy a good immediately. Because trade and
give involve a form of interaction between the agents they run over several sub-rounds. Selling of a good for example
works like this:

• Sub-round 1. The first agent offers the goods. The good is automatically subtracted from the agents posses-
sions, to avoid double selling.

• Sub-round 2. The counter agent receives the offer. The agent can

1. accept: the goods are added to the counter part’s possessions. Money is subtracted.

2. reject (or equivalently ignore): Nothing happens in this sub-round

3. partially accept the offer: The partial amount of goods is added to the counter part’s possessions.
Money is subtracted.

• Sub-round 3. In case of

1. acceptance, the money is credited

2. rejection the original good is re-credited

6 Chapter 1. Introduction

Agent-Based Computational Economics Documentation, Release 0.9.3b0

3. partial acceptance the money is credited and the unsold part of the good is re-credited.

1.2 Download and Installation

abcEconomics works exclusively with python 3!

1.2.1 Installation Ubuntu

1. If python3 and pip not installed in terminal2

sudo apt-get install python3
sudo apt-get install python3-pip

2. In terminal:

sudo pip3 install abcEconomics

3. download and unzip the zip file with examples and the template from: https://github.com/AB-CE/examples

4. Optional for a 10 fold speed increase:

Install pypy3 from https://pypy.org/download.html

5. Install pypy3 additionally:

sudo pypy3 -m pip install abcEconomics

6. For pypy execute models with pypy3 start.py instead of python3 start.py

1.2.2 Installation Mac

1. If you are on OSX Yosemite, download and install: Command line Tools (OS X 10.10) for
XCODE 6.4 from https://developer.apple.com/downloads/

2. If pip not installed in terminal:

sudo python3 -m easy_install pip

3. In terminal:

sudo pip3 install abcEconomics

4. If you are on El Capitain, OSX will ask you to install cc - xcode “Command Line Developer Tools”, click
accept.1

5. If XCODE was installed type again in terminal:

sudo pip3 install abcEconomics

6. download and unzip the zip file with examples and the template from: https://github.com/AB-CE/examples

2 If this fails sudo apt-add-repository universe and sudo apt-get update
1 xcode 7 works only on OSX El Capitan. You need to either upgrade or if you want to avoid updating download xcode 6.4 from here:

https://developer.apple.com/downloads/

1.2. Download and Installation 7

https://github.com/AB-CE/examples
https://github.com/AB-CE/examples
https://pypy.org/download.html
https://developer.apple.com/downloads/
https://github.com/AB-CE/examples
https://github.com/AB-CE/examples
https://developer.apple.com/downloads/

Agent-Based Computational Economics Documentation, Release 0.9.3b0

7. Optional for a 10 fold speed increase:

Install pypy3 from https://pypy.org/download.html

8. Install pypy3 additionally:

sudo pypy3 -m pip install abcEconomics

9. For pypy execute models with pypy3 start.py instead of python3 start.py

1.2.3 Installation Windows

abcEconomics works best with anaconda python 3.5 follow the instructions blow.

1. Install the python3.5 anaconda distribution from https://continuum.io/downloads

3. anaconda prompt or in the command line (cmd) type:

pip install abcEconomics

3. download and unzip the zip file with examples and the template from: https://github.com/AB-CE/examples

1.2.4 Known Issues

• When you run an IDE such as spyder sometimes the website blocks. In

order to avoid that, modify the ‘Run Setting’ and choose ‘Execute in external System Terminal’.

• When the simulation blocks, there is probably a simulation.finalize() command

missing after the simulation loop

1.2.5 If you have any problems with the installation

Mail to: DavoudTaghawiNejad@gmail.com

8 Chapter 1. Introduction

https://pypy.org/download.html
https://continuum.io/downloads
https://github.com/AB-CE/examples
https://github.com/AB-CE/examples
mailto:DavoudTaghawiNejad@gmail.com

Agent-Based Computational Economics Documentation, Release 0.9.3b0

1.3 Interactive jupyter notebook Tutorial

1.3.1 You will learn how to:

1.3.2 Create Simulation & Agents

1.3.3 Run a simulation and advance time

1.3.4 Give Goods & Trade

1.3.5 Capturing Data and Pandas

1.3.6 Communication between Simulation and Agents

1.4 Walk through

In order to learn using abcEconomics we will now dissect and explain a simple abcEconomics model. Additional to
this walk through you should also have a look on the examples in

<https://github.com/AB-CE/examples>(https://github.com/AB-CE/examples),

Objects the other ontological object of agent-based models.

Objects have a special stance in agent-based modeling:

• objects can be recovered (resources)

• exchanged (trade)

• transformed (production)

• consumed

• destroyed (not really) and time depreciated

abcEconomics, takes care of trade, production / transformation and consumption of goods automatically.
Good categories can also be made to perish or regrow.

Services or labor We can model services and labor as goods that perish and that are replenished every round. This
would amount to a worker that can sell one unit of labor every round, that disappears if not used.

Closed economy When we impose that goods can only be transformed. The economy is physically closed (the
economy is stock and flow consistent). When the markets are in a complete network our economy is complete.
Think “general” in equilibrium economics.

Caveats: If agents horde without taking their stock into account it’s like destruction.

1.4.1 start.py

""" 1. Build a Simulation
2. Build one Household and one Firm follow_agent
3. For every labor_endowment an agent has he gets one trade or usable

→˓labor

(continues on next page)

1.3. Interactive jupyter notebook Tutorial 9

https://github.com/AB-CE/examples
https://github.com/AB-CE/examples

Agent-Based Computational Economics Documentation, Release 0.9.3b0

(continued from previous page)

per round. If it is not used at the end of the round it disappears.
4. Firms' and Households' possessions are monitored to the points marked

→˓in
timeline.

"""

from abcEconomics import Simulation
from firm import Firm
from household import Household

def main():
simulation = Simulation()

firms = simulation.build_agents(Firm, 'firm', 1)
households = simulation.build_agents(Household, 'household', 1)

for r in range(100):
simulation.advance_round(r)
households.refresh_services(service='labor' , derived_from='labor_

→˓endowment', units=1)
households.sell_labor()
firms.buy_labor()
firms.production()
(households + firms).panel_log(goods=['money', 'GOOD'])
households.panel_log(variables=['current_utility'])
firms.sell_goods()
households.buy_goods()
households.consumption()

simulation.finalize()

if __name__ == '__main__':
main()

It is of utter most importance to end with simulation.finalize()

The order of actions: The order of actions within a round

Every agents-based model is characterized by the order of which the actions are executed. In abcEconomics, there are
rounds, every round is composed of sub-rounds, in which a group or several groups of agents act in parallel. In the
code below you see a typical sub-round. Therefore after declaring the Simulation the order of actions, agents and
objects are added.

for round in range(1000):
simulation.advance_round(round)
households.sell_labor()
firms.buy_labor()
firms.production()
(households + firms).panel_log(...)
firms.sell_goods()
households.buy_goods()
households.consumption()

This establishes the order of the simulation. Make sure you do not overwrite internal abilities/properties of the agents.
Such as ‘sell’, ‘buy’ or ‘consume’.

10 Chapter 1. Introduction

Agent-Based Computational Economics Documentation, Release 0.9.3b0

A more complex example could be:

for week in range(52):
for day in ['mo', 'tu', 'we', 'th', 'fr']:
simulation.advance_round((week, day))
if day = 'mo':

households.sell_labor()
firms.buy_labor()

firms.production()
(households + firms).panel()
for i in range(10):

firms.sell_goods()
households.buy_goods()

households.consumption()
if week == 26:

government.policy_change()

Interactions happen between sub-rounds. An agent, sends a message in one round. The receiving agent, receives
the message the following sub-round. A trade is finished in three rounds: (1) an agent sends an offer the good is
blocked, so it can not be sold twice (2) the other agent accepts or rejects it. (3) If accepted, the good is automatically
delivered at the beginning of the sub-round. If the trade was rejected: the blocked good is automatically unblocked.

Special goods and services

Now we will establish properties of special goods. A normal good can just be created or produced by an agent; it can
also be destroyed, transformed or consumed by an agent. some goods ‘perish’ every round. These properties have to
be refreshed at the end of every round:

for round in range(1000):
simulation.advance_round(round)
...
households.refresh_services(service='labor' , derived_from='labor_endowment',

→˓units=1)

In this example, the refresh_services removes the existing ‘labor’ goods and regenerates 1 unit of labor from scratch
from every unit of labor_endowment

One important remark, for a logically consistent macro-model it is best to not create any goods during the simulation,
but only in abcEconomics.Agent.init(). During the simulation the only new goods should be created by
abcEconomics.Goods.refresh_services(). In this way the economy is physically closed.

firms.panel_log(goods=['good1', 'good2') # a list of firm possessions to track here

households.agg_log('household', goods=['good1', 'good2'],
variables=['utility']) # a list of household variables to track

→˓here

The possessions good1 and good2 are tracked, the agent’s variable self.utility is tracked. There are several
ways in abcEconomics to log data. Note that the variable names a strings.

Alternative to this you can also log within the agents by simply using self.log(‘text’, variable) (abcEconomics.
Database.log()) Or self.log(‘text’, {‘var1’: var1, ‘var2’: var2}). Using one log command with a dictionary is
faster than using several seperate log commands.

Having established special goods and logging, we create the agents:

1.4. Walk through 11

Agent-Based Computational Economics Documentation, Release 0.9.3b0

simulation.build_agents(Firm, 'firm', number=simulation_parameters['number_of_firms'],
→˓ parameters=simulation_parameters)
simulation.build_agents(Household, 'household', number=10, parameters=simulation_
→˓parameters)

• Firm is the class of the agent, that you have imported

• ‘firm’ is the group_name of the agent

• number is the number of agents that are created

• parameters is a dictionary of parameters that the agent receives in the init function (which is discussed later)

simulation.build_agents(Plant, 'plant',
parameters=simulation_parameters,
agent_parameters=[{'type':'coal' 'watt': 20000},

{'type':'electric' 'watt': 99}
{'type':'water' 'watt': 100234}])

This builds three Plant agents. The first plant gets the first dictionary as a agent_parameter {‘type’:’coal’ ‘watt’:
20000}. The second agent, gets the second dictionary and so on.

1.4.2 The agents

The Household agent

import abcEconomics

class Household(abcEconomics.Agent, abcEconomics.Household):
def init(self):

""" 1. labor_endowment, which produces, because of simulation.declare_
→˓resource(...)

in start.py one unit of labor per month
2. Sets the utility function to utility = consumption of good "GOOD"
"""
self.labor_endowment = 1
self.utility_function = self.create_cobb_douglas_utility_function({"GOOD": 1})
self.current_utility = 0

def sell_labor(self):
""" offers one unit of labor to firm 0, for the price of 1 "money" """
self.sell(('firm', 0),

good="labor",
quantity=1,
price=1)

def buy_goods(self):
""" receives the offers and accepts them one by one """
oo = self.get_offers("GOOD")
for offer in oo:

self.accept(offer)

def consumption(self):
""" consumes_everything and logs the aggregate utility. current_utility
"""

(continues on next page)

12 Chapter 1. Introduction

Agent-Based Computational Economics Documentation, Release 0.9.3b0

(continued from previous page)

self.current_utility = self.consume(self.utility_function, ['GOOD'])
self.log('HH', self.current_utility)

The Firm agent

import abcEconomics

class Firm(abcEconomics.Agent, abcEconomics.Firm):
def init(self):

""" 1. Gets an initial amount of money
2. create a cobb_douglas function: GOOD = 1 * labor ** 1.
"""
self.create('money', 1)
self.inputs = {"labor": 1}
self.output = "GOOD"
self.pf = self.create_cobb_douglas(self.output, 1, self.inputs)

def buy_labor(self):
""" receives all labor offers and accepts them one by one """
oo = self.get_offers("labor")
for offer in oo:

self.accept(offer)

def production(self):
""" uses all labor that is available and produces
according to the set cobb_douglas function """
self.produce(self.pf, self.inputs)

def sell_goods(self):
""" offers one unit of labor to firm 0, for the price of 1 "money" """
self.sell(('household', 0),

good="GOOD",
quantity=self["GOOD"],
price=1)

Agents are modeled in a separate file. In the template directory, you will find two agents: firm.py and
household.py.

At the beginning of each agent you will find

An agent has to import the abcEconomics module and the abcEconomics.NotEnoughGoods exception

import abcEconomics
from abcEconomics import NotEnoughGoods

This imports the module abcEconomics in order to use the base classes Household and Firm. And the NotEnough-
Goods exception that allows us the handle situation in which the agent has insufficient resources.

An agent is a class and must at least inherit abcEconomics.Agent. It automatically inherits abcEconomics.
Trade - abcEconomics.Messenger and abcEconomics.Logger

class Agent(abcEconomics.Agent):

To create an agent that has can create a consumption function and consume

1.4. Walk through 13

Agent-Based Computational Economics Documentation, Release 0.9.3b0

class Household(abcEconomics.Agent, abcEconomics.Household):

To create an agent that can produce:

class Firm(abcEconomics.Agent, abcEconomics.Firm)

You see our Household agent inherits from abcEconomics.Agent, which is compulsory and abcEconomics.
Household. Household on the other hand are a set of methods that are unique for Household agents. The Firm class
accordingly

The init method

When an agent is created it’s init function is called and the simulation parameters as well as the agent_parameters are
given to him

DO NOT OVERWRITE THE __init__ method. Instead use abcEconomics’s init method, which is called when
the agents are created

def init(self, parameters, agent_parameters):
self.labor_endownment = 1
self.utility_function = self.create_cobb_douglas_utility_function({"MLK": 0.300,

→˓"BRD": 0.700})
self.type = agent_parameters['type']
self.watt = agent_parameters['watt']
self.number_of_firms = parameters['number_of_firms']

The init method is the method that is called when the agents are created (by the abcEconomics.Simulation.
build_agents()). When the agents were build, a parameter dictionary and a list of agent parameters were given.
These can now be accessed in init via the parameters and agents_parameters variable. Each agent gets
only one element of the agents_parameters list.

With self.create the agent creates the good ‘labor_endowment’. Any good can be created. Generally speaking. In
order to have a physically consistent economy goods should only be created in the init method. The good money is
used in transactions.

This agent class inherited abcEconomics.Household.create_cobb_douglas_utility_function()
from abcEconomics.Household. With abcEconomics.Household.
create_cobb_douglas_utility_function() you can create a cobb-douglas function. Other functional
forms are also available.

In order to let the agent remember a parameter it has to be saved in the self domain of the agent.

The action methods and a consuming Household

All the other methods of the agent are executed when the corresponding sub-round is called from the action_list in the
Simulation in start.py.

For example when in the action list (‘household’, ‘consumption’) is called the consumption method is executed of each
household agent is executed. It is important not to overwrite abcEconomics’s methods with the agents methods.
For example if one would call the consumption(self) method below consume(self), abcEconomics’s con-
sume function would not work anymore.

class Household(abcEconomics.Agent, abcEconomics.Household):
def init(self, simulation_parameters, agent_parameters):

self.labor_endowment = 1

(continues on next page)

14 Chapter 1. Introduction

Agent-Based Computational Economics Documentation, Release 0.9.3b0

(continued from previous page)

self.utility_function = self.create_cobb_douglas_utility_function({"GOOD": 1})
self.current_utility = 0

. . .

def consumption(self):
""" consumes_everything and logs the aggregate utility. current_utility
"""
self.current_utility = self.consume_everything()
self.log('HH', self.current_utility)

In the above example we see how a (degenerate) utility function is declared and how the agent consumes. The
dictionary assigns an exponent for each good, for example a consumption function that has .5 for both exponents
would be {‘good1’: 0.5, ‘good2’: 0.5}.

In the method consumption, which has to be called form the action_list in the Simulation, everything is consumed an
the utility from the consumption is calculated and logged. The utility is logged and can be retrieved see retrieval of the
simulation results

Firms and Production functions

Firms do two things they produce (transform) and trade. The following code shows you how to declare a technology
and produce bread from labor and yeast.

class Agent(abcEconomics.Agent, abcEconomics.Firm):
def init(self):

set_cobb_douglas('bread', 1.890, {"yeast": 0.333, "labor": 0.667})
...

def production(self):
self.produce_use_everything()

More details in abcEconomics.Firm. abcEconomics.FirmMultiTechnologies offers a more advanced
interface for firms with layered production functions.

Trade

abcEconomics clears trade automatically. That means, that goods are automatically exchanged, double selling of a
good is avoided by subtracting a good from the possessions when it is offered for sale. The modeler has only to decide
when the agent offers a trade and sets the criteria to accept the trade

Agent 1
def selling(self):

offer = self.sell(buyer, 2, 'BRD', price=1, quantity=2.5)
self.checkorders.append(offer) # optional

Agent 2
def buying(self):

offers = self.get_offers('cookies')
for offer in offers:

if offer.price < 0.5
try:

self.accept(offer)

(continues on next page)

1.4. Walk through 15

Agent-Based Computational Economics Documentation, Release 0.9.3b0

(continued from previous page)

except NotEnoughGoods:
self.accept(offer, self['money'] / offer.price)

Agent 1
def check_trade(self):

print(self.checkorders[0])

Agent 1 sends a selling offer to Agent 2, which is the agent with the id 2 from the buyer group (buyer_2) Agent
2 receives all offers, he accepts all offers with a price smaller that 0.5. If he has insufficient funds to accept an
offer an NotEnoughGoods exception is thrown. If a NotEnoughGoods exception is thrown the except block self.
accept(offer, self['money'] / offer.price) is executed, which leads to a partial accept. Only as
many goods as the agent can afford are accepted. If a polled offer is not accepted its automatically rejected. It can also
be explicitly rejected with self.reject(offer) (abcEconomics.Trade.reject()).

You can find a detailed explanation how trade works in abcEconomics.Trade.

Data production

There are three different ways of observing your agents:

Trade Logging

when you specify Simulation(..., trade_logging='individual') all trades are recorded and a SAM
or IO matrix is created. This matrices are accessible as csv files in the simulation.path directory

Manual in agent logging

An agent can log a variable, abcEconomics.Agent.possession(), abcEconomics.Agent.
possessions() and most other methods such as abcEconomics.Firm.produce()with abcEconomics.
Database.log():

self.log('possessions', self.possessions())
self.log('custom', {'price_setting': 5: 'production_value': 12})
prod = self.production_use_everything()
self.log('current_production', prod)

Retrieving the logged data

The results are stored in a subfolder of the ./results/ folder. simulation.path gives you the path to that folder.

The tables are stored as ‘.csv’ files which can be opened with excel.

1.5 Tutorial for Plant Modeling

1. Lets write the 1st agent:

a. Create a file chpplant.py import abcEconomics and create a Plant class.

16 Chapter 1. Introduction

Agent-Based Computational Economics Documentation, Release 0.9.3b0

import abcEconomics

class CHPPlant(abcEconomics.Agent, abcEconomics.Firm):

b. In def init(self): (not __init__!) we need to create some initial goods

class CHPPlant(...):

...
def init(self):

self.create('biogas', 100)
self.create('water', 100)

c. Now we need to specify production functions. There are standard production functions like
cobb-douglas and leontief already implemented, but our plants get more complicated production
functions. We define the production function a firm uses in def init(self). So there add
the following lines, class CHPPLant(...):

class CHPPlant(...):

def init(self):
self.create('biogas', 100)
self.create('water', 100)

def production_function(biogas, water):
electricity = biogas ** 0.25 * water ** 0.5
steam = min(biogas, water)
biogas = 0
water = 0
return locals()

self.production_function = production_function

The def production_function(biogas, water): returns the production re-
sult as a dictionary. (try print(production_function(10, 10))). Each key is
a good that is produced or what remains of a good after the production process. If goods
are used up they must be set to 0. For example the function above creates electricity and
steam. Electricity is produced by a cobb-douglas production function. While steam is the
minimum between the amount of water and fuel used.

The production_function function is local function in the init method. Make sure
the return locals() is part of the def production_function(...): not of
the def init(self): method.

1. In order to produce create a production method in class CHPPlant(...): insert the fol-
lowing code right after the def init(self): method:

class CHPPlant(...):
...
def production(self):

self.produce(self.production_function, {'biogas': 100, 'water
→˓': 100})

e. also add:

1.5. Tutorial for Plant Modeling 17

Agent-Based Computational Economics Documentation, Release 0.9.3b0

class CHPPlant(...):
...
def refill(self):

self.create('biogas', 100)
self.create('water', 100)

3. Create a file start.py to run this incomplete simulation.

a. Import abcEconomics and the plant:

import abcEconomics
from chpplant import CHPPlant

b. Create a simulation instance:

simulation = abcEconomics.Simulation()

c. Build an a plant

chpplant = simulation.build_agents(CHPPlant, 'chpplant',
→˓number=1)

With this we create 1 agent of type CHPPLANT, it’s group name will be chpplant and its
number 0. Therefore its name is the tuple (‘chpplant’, 0)

1. Loop over the simulation:

for r in range(100):
simulation.advance_round(r)
chpplant.production()
chpplant.panel_log(goods=['electricity', 'biogas', 'water',

→˓'steam'], variables=[])
chpplant.refill()

simulation.finalize()

This will tell the simulation that in every round, the plant execute the
production method we specified in CHPPLant. Then it refills the input goods.
Lastly, it creates a snapshot of the goods of chpplant as will be specified in (e).

simulation.advance_round(r) sets the time r. Lastly simulation.finalize()
tells the simulation that the loop is done. Otherwise the program hangs at the end.

4. To run your simulation, the best is to use the terminal and in the directory of your simulation type python
start.py. In SPYDER make sure that BEFORE you run the simulation for the first time you modify the
‘Run Setting’ and choose ‘Execute in external System Terminal’. If you the simulation in the IDE without
making this changes the GUI might block.

5. Lets modify the agent so he is ready for trade

a. now delete the refill function in CHPPlant, both in the agent and in the actionlist delete chpplant.
refill()

b. let’s simplify the production method in CHPPlant to

def production(self):
self.produce_use_everything()

c. in init we create money with self.create(‘money’, 1000)

18 Chapter 1. Introduction

Agent-Based Computational Economics Documentation, Release 0.9.3b0

7. Now let’s create a second agent ADPlant.

a. copy chpplant.py to applant.py and

b. in adplant.py change the class name to ADPlant

c. ADPlant will produce biogas and water out of steam and electricity. In order to achieve this forget about
thermodynamics and change the production function to

def production_function(steam, electricity):
biogas = min(electricity, steam)
water = min(electricity, steam)
electricity = 0
steam = 0
return locals()

d. Given the new technology, we need to feed different goods into our machines. Replace the production step

def production(self):
self.produce(self.production_function, {'steam': self['steam'],

→˓'electricity': self['electricity']})

self[‘steam’], looks up the amount of steam the company owns. self.not_reserved[‘steam’], would look up
the amount of steam a company owns minus all steam that is offered to be sold to a different company.

e. ADPlant will sell everything it produces to CHPPlant. We know that the group name of chpplant is
‘chpplant and its id number (id) is 0. Add another method to the ADPlant class.

def selling(self):
amount_biogas = self['biogas]
amount_water = self['water']
self.sell(('chpplant', 0), good='water', quantity=amount_water, price=1)
self.sell(('chpplant', 0), good='biogas', quantity=amount_biogas, price=1)

This makes a sell offer to chpplant.

f. In CHPPlant respond to this offer, by adding the following method.

def buying(self):
water_offer = self.get_offers('water')[0]
biogas_offer = self.get_offers('biogas')[0]

if (water_offer.price * water_offer.quantity +
biogas_offer.price * biogas_offer.quantity < self['money']):

self.accept(water_offer)
self.accept(biogas_offer)

else:
quantity_allocationg_half_my_money = self['money'] / water_offer.price
self.accept(water_offer, min(water_offer.quantity, quantity_

→˓allocationg_half_my_money))
self.accept(biogas_offer, min(biogas_offer, self['money']))

This accepts both offers if it can afford it, if the plant can’t, it allocates half of the money for either good.

g. reversely in CHPPlant:

def selling(self):
amount_electricity = self['electricity']
amount_steam = self['steam']

(continues on next page)

1.5. Tutorial for Plant Modeling 19

Agent-Based Computational Economics Documentation, Release 0.9.3b0

(continued from previous page)

self.sell(('adplant', 0), good='electricity', quantity=amount_electricity,
→˓ price=1)

self.sell(('adplant', 0), good='steam', quantity=amount_steam, price=1)

h. and in ADPlant:

def buying(self):
el_offer = self.get_offers('electricity')[0]
steam_offer = self.get_offers('steam')[0]

if (el_offer.price * el_offer.quantity
+ steam_offer.price * steam_offer.quantity < self['money']):
self.accept(el_offer)
self.accept(steam_offer)

else:
quantity_allocationg_half_my_money = self['money'] / el_offer.price
self.accept(el_offer, min(el_offer.quantity, quantity_allocationg_

→˓half_my_money))
self.accept(steam_offer, min(steam_offer, self['money']))

8. let’s modify start.py

b. in start.py import thu ADPlant:

from adplant import ADPlant

and

adplant = simulation.build_agents(ADPlant, 'adplant', number=1)

c. change the action list to:

for r in range(100):
simulation.advance_round(r)
(chpplant + adplant).production()
(chpplant + adplant).selling()
(chpplant + adplant).buying()
chpplant.panel()

9. now it should run again.

1.6 Examples

abcEconomics’s examples can be downloaded from here: https://github.com/AB-CE/examples

20 Chapter 1. Introduction

https://github.com/AB-CE/examples

Agent-Based Computational Economics Documentation, Release 0.9.3b0

1.6.1 Concepts used in examples

Examplejupyter pandas logging Trade multi-
core

create
agents

delete
agents

graphical
user
inter-
face

endowmentperishablemesa
graph-
ical
spa-
cial

contracts

jupyter_tutorialX X X X
50000_firms X
create_agents
delete_agent

X X

one_household_one_firm X
X X

pid_controller X
mesa_example
sug-
arscape

X

CCE X trade
log-
ging

Extended
GUI

cheesegrater
insur-
ance

X X

2sectors
Model
of
Car
mar-
ket

Example pro-
duction
function

utility
func-
tion

arbitrary
time
intervals

multi-
core

cre-
ate
agents

delete
agents

graphi-
cal user
interface

en-
dow-
ment

per-
ish-
able

mesa
graphical
spacial

jupyter_tutorial
50000_firms X
cre-
ate_agents
delete_agent

X X

one_household_one_firm simple
X X

pid_controller
mesa_example
sugarscape

X

CCE X X X
cheeseg-
rater
insurance

X

2sectors X X
Model of
Car market
Calendar X

1.6. Examples 21

Agent-Based Computational Economics Documentation, Release 0.9.3b0

1.6.2 Models

CCE

This is the most complete example featuring an agent-based model of climate change tax policies for the United States.
It is databased and uses production and utility functions.

One sector model

One household one firm is a minimalistic example of a ‘macro-economy’. It is ‘macro’ in the sense that the complete
circular flow of the economy is represented. Every round the following sub-rounds are executed:

household: sell_labor

firm: buy_labor

firm: production

firm: sell_goods

household: buy_goods

household: consumption

After the firms’ production and the acquisition of goods by the household a statistical panel of the firms’ and the
households’ possessions, respectively, is written to the database.

The economy has two goods a representative ‘GOOD’ good and ‘labor’ as well as money. ‘labor’, which is a service
that is represented as a good that perishes every round when it is not used. Further the endowment is of the labor
good that is replenished every round for every agent that has an ‘adult’. ‘Adults’ are handled like possessions of the
household agent.

The household has a degenerate Cobb-Douglas utility function and the firm has a degenerate Cobb-Douglas production
function:

utility = GOOD ^ 1

GOOD = labor ^ 1

The firms own an initial amount of money of 1 and the household has one adult, which supplies one unit of (perishable)
labor every round.

First the household sells his unit of labor. The firm buys this unit and uses all available labor for production. The
complete production is offered to the household, which in turn buys everything it can afford. The good is consumed
and the resulting utility logged to the database.

Two sector model

The two sector model is similar to the one sector model. It has two firms and showcases abcEconomics’s ability to
control the creation of agents from an excel sheet.

There are two firms. One firm manufactures an intermediary good. The other firm produces the final good. Both firms
are implemented with the same good. The type a firm develops is based on the excel sheet.

The two respective firms production functions are:

intermediate_good = labor ^ 1

consumption_good = intermediate_good ^ 1 * labor ^ 1

22 Chapter 1. Introduction

Agent-Based Computational Economics Documentation, Release 0.9.3b0

The only difference is that, when firms sell their products the intermediate good firm sells to the final good firm and
the final good firm, in the same sub-round sells to the household.

In start.py we can see that the firms that are build are build from an excel sheet:

w.build_agents_from_file(Firm, parameters_file=’agents_parameters.csv’)
w.build_agents_from_file(Household)

And here the excel sheet:

agent_class number sector firm 1 intermediate_good firm 1 consumption_good household 1 0 household
1 1

The advantage of this is that the parameters can be used in the agent. The line self.sector = agent_parameters[‘sector’]
reads the sector column and assigns it to the self.sector variable. The file simulation parameters is read - line
by line - into the variable simulation_parameters. It can be used in start.py and in the agents with simula-
tion_parameters[‘columnlabel’].

50000 agents example

This is a sheer speed demonstration, that lets 50000 agents trade.

PID controllers

PID controller are a simple algorithm for firms to set prices and quantities. PID controller, work like a steward of a
ship. He steers to where he wants to go and after each action corrects the direction based on how the ship changed it’s
direction,

pid_controller analytical

A simulation of the first Model of Ernesto Carrella’s paper: Sticky Prices Microfoundations in a Agent Based Supply
Chain Section 4 Firms and Production

Here we have one firm and one market agent. The market agent has the demand function q = 102 - p. The PID
controller uses an analytical model of the optimization problem.

Simple Seller Example

A simulation of the first Model of Ernesto Carrella’s paper: Zero-Knowledge Traders, journal of artificial societies
and social simulation, December 2013

This is a partial ‘equilibrium’ model. A firm has a fixed production of 4 it offers this to a fixed population of 10
household. The household willingness to pay is household id * 10 (10, 20, 30 . . . 90). The firms sets the prices using
a PID controller.

Fully PID controlled

A simulation of the first Model of Ernesto Carrella’s paper: Sticky Prices Microfoundations in a Agent Based Supply
Chain Section 4 Firms and Production

Here we have one firm and one market agent. The market agent has the demand function q = 102 - p. The PID
controller has no other knowledge then the reaction of the market in terms of demand.

1.6. Examples 23

Agent-Based Computational Economics Documentation, Release 0.9.3b0

1.7 unit testing

One of the major problem of doing science with simulations is that results found could be a mere result of a mistake in
the software implementation. This problem is even stronger when emergent phenomena are expected. The first hedge
against this problem is of course carefully checking the code. abcEconomics and Pythons brevity and readability are
certainly helping this. However structured testing procedures create more robust software.

Currently all trade and exchange related as well as endowment, production utility and data logging facilities are unit
tested. It is planned to extend unit testing to quotes, so that by version 1.0 all functions of the agents will be fully unit
tested.

The modeler can run the unit testing facilities on his own system and therefore assert that on his own system the code
runs correctly.

Unit testing is the testing of the testable part of a the software code. [?]. As in abcEconomics the most crucial
functions are the exchange of goods or information, the smallest testable unit is often a combination of two actions
[?]. For example making an offer and then by a second agent accepting or rejecting it. The interaction and concurrent
nature of abcEconomics simulation make it unpractical to use the standard unit testing procedures of Python.

[?] argue that unit-testing is economical. In the analysis of three projects they find that unit-testing finds errors in the
code and argue that its cost is often exaggerated. We can therefore conclude that unit-testing is necessary and a cost
efficient way of ensuring the correctness of the results of the simulation. For the modeler this is an additional incentive
to use abcEconomics, if he implemented the simulation as a stand alone program he would either have to forgo the
testing of the agent’s functions or write his own unit-testing facilities.

24 Chapter 1. Introduction

CHAPTER 2

Simulation Programming

2.1 The simulation in start.py

The best way to start creating a simulation is by copying the start.py file and other files from ‘abcEconomics/template’
in https://github.com/AB-CE/examples.

To see how to create a simulation, read ipython_tutorial.

This is a minimal template for a start.py:

from agent import Agent
from abcEconomics import *

simulation = Simulation(name='abcEconomics')
agents = simulation.build_agents(Agent, 'agent', 2)
for time in range(100):

simulation.advance_round(time)
agents.one()
agents.two()
agents.three()

simulation.finalize()

Note two things are important: there must be a

finalize() at the end otherwise the simulation blocks at the end. Furthermore, every round needs to be announced
using simulation.advance_round(time), where time is any representation of time.

class abcEconomics.Simulation(name=’abcEconomics’, random_seed=None,
trade_logging=’off’, processes=1, dbplugin=None, dbplugi-
nargs=[], path=’auto’, multiprocessing_database=False)

Bases: object

This is the class in which the simulation is run. Actions and agents have to be added. Databases and resource
declarations can be added. Then run the simulation.

Args:

25

https://github.com/AB-CE/examples
https://docs.python.org/3/library/functions.html#object

Agent-Based Computational Economics Documentation, Release 0.9.3b0

name: name of the simulation

random_seed (optional): a random seed that controls the random number of the simulation

trade_logging: Whether trades are logged,trade_logging can be ‘group’ (fast) or ‘individual’ (slow) or
‘off’

processes (optional): The number of processes that runs in parallel. Each process hosts a share of the
agents. By default, if this parameter is not specified, processes is all your logical processor cores
times two, using hyper-threading when available. For easy debugging, set processes to one and the
simulation is executed without parallelization. Sometimes it is advisable to decrease the number of
processes to the number of logical or even physical processor cores on your computer. For easy
debugging set processes to 1, this way only one agent runs at a time and only one error message
is displayed

check_unchecked_msgs: check every round that all messages have been received with get_massages or
get_offers.

path: path for database use None to omit directory creation.

dbplugin, dbpluginargs: database plugin, see Database Plugins

Example:

simulation = Simulation(name='abcEconomics',
trade_logging='individual',
processes=None)

Example for a simulation:

num_firms = 5
num_households = 2000

w = Simulation(name='abcEconomics',
trade_logging='individual',
processes=None)

w.panel('firm', command='after_sales_before_consumption')

firms = w.build_agents(Firm, 'firm', num_firms)
households = w.build_agents(Household, 'household', num_households)

all = firms + households

for time in range(100):
self.time = time
endowment.refresh_services('labor', derived_from='labor_endowment', units=5)
households.recieve_connections()
households.offer_capital()
firms.buy_capital()
firms.production()
if time == 250:

centralbank.intervention()
households.buy_product()
all.after_sales_before_consumption()
households.consume()

w.finalize()

advance_round(time)

26 Chapter 2. Simulation Programming

Agent-Based Computational Economics Documentation, Release 0.9.3b0

build_agents(AgentClass, group_name, number=None, agent_parameters=None, **parameters)
This method creates agents.

Args:

AgentClass: is the name of the AgentClass that you imported

group_name: the name of the group, as it will be used in the action list and transactions. Should
generally be lowercase of the AgentClass.

number: number of agents to be created.

agent_parameters: a list of dictionaries, where each agent gets one dictionary. The number of
agents is the length of the list

any other parameters: are directly passed to the agent

Example:

firms = simulation.build_agents(Firm, 'firm',
number=simulation_parameters['num_firms'])

banks = simulation.build_agents(Bank, 'bank',
agent_parameters=[{'name': 'UBS'},
{'name': 'amex'},{'name': 'chase'}

**simulation_parameters,
loanable=True)

centralbanks = simulation.build_agents(CentralBank, 'centralbank',
number=1,
rounds=num_rounds)

create_agent(AgentClass, group_name, simulation_parameters=None, agent_parameters=None)

create_agents(AgentClass, group_name, simulation_parameters=None, agent_parameters=None,
number=1)

delete_agent(*ang)

delete_agents(group, ids)
This deletes a group of agents. The model has to make sure that other agents are notified of the death of
agents in order to stop them from corresponding with this agent. Note that if you create new agents after
deleting agents the ID’s of the deleted agents are reused.

Args:

group: group of the agent

ids: a list of ids of the agents to be deleted in that group

finalize()
simulation.finalize() must be run after each simulation. It will write all data to disk

Example:

simulation = Simulation(...)
...
for r in range(100):

simulation.advance_round(r)
agents.do_something()
...

simulation.finalize()

2.1. The simulation in start.py 27

Agent-Based Computational Economics Documentation, Release 0.9.3b0

time
Set and get time for simulation and all agents

2.2 Agents

The abcEconomics.Agent class is the basic class for creating your agents. It automatically handles the possession
of goods of an agent. In order to produce/transforme goods you also need to subclass the abcEconomics.Firm or
to create a consumer the abcEconomics.Household.

For detailed documentation on:

Trading, see Trader

Logging and data creation, see Observing agents and logging.

Messaging between agents, see Messenger.

class abcEconomics.Agent(id, agent_parameters, simulation_parameters, name=None)
Bases: abcEconomics.logger.logger.Logger, abcEconomics.agents.trader.Trader,
abcEconomics.agents.messenger.Messenger, abcEconomics.agents.goods.Goods

Every agent has to inherit this class. It connects the agent to the simulation and to other
agent. The abcEconomics.Trade, abcEconomics.Logger and abcEconomics.Messenger
classes are included. An agent can also inheriting from abcEconomics.Firm, abcEconomics.
FirmMultiTechnologies or abcEconomics.Household classes.

Every method can return parameters to the simulation.

For example:

class Household(abcEconomics.Agent, abcEconomics.Household):
def init(self, simulation_parameters, agent_parameters):

self.num_firms = simulation_parameters['num_firms']
self.type = agent_parameters['type']
...

def selling(self):
for i in range(self.num_firms):

self.sell('firm', i, 'good', quantity=1, price=1)

...
def return_quantity_of_good(self):

return['good']

...

simulation = Simulation()
households = Simulation.build_agents(household, 'household',

parameters={...},
agent_parameters=[{'type': 'a'},

{'type': 'b'}])
for r in range(10):

simulation.advance_round(r)
households.selling()
print(households.return_quantity_of_good())

group = None
self.group returns the agents group or type READ ONLY!

28 Chapter 2. Simulation Programming

Agent-Based Computational Economics Documentation, Release 0.9.3b0

id = None
self.name returns the agents name, which is the group name and the id

init()
This method is called when the agents are build. It can be overwritten by the user, to initialize the agents.
Parameters are the parameters given to abcEconomics.Simulation.build_agents().

Example:

class Student(abcEconomics.Agent):
def init(self, rounds, age, lazy, school_size):

self.rounds = rounds
self.age = age
self.lazy = lazy
self.school_size = school_size

def say(self):
print('I am', self.age ' years old and go to a school
that is ', self.school_size')

def main():
sim = Simulation()
students = sim.build_agents(Student, 'student',

agent_parameters=[{'age': 12, lazy: True},
{'age': 12, lazy: True},
{'age': 13, lazy: False},
{'age': 14, lazy: True}],

rounds=50,
school_size=990)

time = None
self.time, contains the time set with simulation.advance_round(time) you can set time to anything you want
an integer or (12, 30, 21, 09, 1979) or ‘monday’

2.3 Groups

class abcEconomics.Group(sim, scheduler, names, agent_arguments=None)
Bases: object

A group of agents. Groups of agents inherit the actions of the agents class they are created by. When a group is
called with an agent action all agents execute this actions simultaneously. e.G. banks.buy_stocks(), then
all banks buy stocks simultaneously.

agents groups are created like this:

sim = Simulation()

Agents = sim.build_agents(AgentClass, 'group_name', number=100, param1=param1,
→˓param2=param2)
Agents = sim.build_agents(AgentClass, 'group_name',

param1=param1, param2=param2,
agent_parameters=[dict(ap=ap1_agentA, ap=ap2_agentA),

dict(ap=ap1_agentB, ap=ap2_agentB),
dict(ap=ap1_agentC, ap=ap2_agentC)])

Agent groups can be combined using the + sign:

2.3. Groups 29

https://docs.python.org/3/library/functions.html#object

Agent-Based Computational Economics Documentation, Release 0.9.3b0

financial_institutions = banks + hedgefunds
...
financial_institutions.buy_stocks()

or:

(banks + hedgefunds).buy_stocks()

Simultaneous execution means that all agents act on the same information set and influence each other only after
this action.

individual agents in a group are addressable, you can also get subgroups (only from non combined groups):

banks[5].buy_stocks()

(banks[6,4] + hedgefunds[7,9]).buy_stocks()

agents actions can also be combined:

buying_stuff = banks.buy_stocks & hedgefunds.buy_feraries
buy_stocks()

or:

(banks.buy_stocks & hedgefunds.buy_feraries)()

agg_log(variables=[], goods=[], func={}, len=[])
agg_log(.) writes a aggregate data of variables and goods of a group of agents into the database, so that it
is displayed in the gui.

Args:

goods (list, optional): a list of all goods you want to track as ‘strings’

variables (list, optional): a list of all variables you want to track as ‘strings’

func (dict, optional): accepts lambda functions that execute functions. e.G. func = lambda
self: self.old_money - self.new_money

len (list, optional): records the length of the list or dictionary with that name.

Example in start.py:

for round in simulation.next_round():
firms.produce_and_sell()
firms.agg_log(goods=['money', 'input'],

variables=['production_target', 'gross_revenue'])
households.buying()

by_name(name)
Return a group of a single agents by its name

by_names(names)
Return a callable group of agents from a list of names.group

Example:

banks.by_names(['UBS', 'RBS', "DKB"]).give_loans()

create_agents(Agent, number=1, agent_parameters=None, **common_parameters)
Create new agents to this group. Works only for non-combined groups

30 Chapter 2. Simulation Programming

Agent-Based Computational Economics Documentation, Release 0.9.3b0

Args:

Agent: The class used to initialize the agents

agent_parameters: List of dictionaries of agent_parameters

number: number of agents to create if agent_parameters is not set

any keyword parameter: parameters directly passed to agent.init methood

Returns: The id of the new agent

delete_agents(names)
Remove an agents from a group, by specifying their id.

Args:

ids: list of ids of the agent

Example:

students.delete_agents([1, 5, 15])

panel_log(variables=[], goods=[], func={}, len=[])
panel_log(.) writes a panel of variables and goods of a group of agents into the database, so that it is
displayed in the gui.

Args:

goods (list, optional): a list of all goods you want to track as ‘strings’

variables (list, optional): a list of all variables you want to track as ‘strings’

func (dict, optional): accepts lambda functions that execute functions. e.G. func = lambda
self: self.old_money - self.new_money

len (list, optional): records the length of the list or dictionary with that name.

Example in start.py:

for round in simulation.next_round():
firms.produce_and_sell()
firms.panel_log(goods=['money', 'input'],

variables=['production_target', 'gross_revenue'])
households.buying()

2.4 Physical goods and services

2.4.1 Goods

An agent can access a good with self['cookies'] or self['money'].

• self.create(money, 15) creates money

• self.destroy(money, 10) destroys money

• goods can be given, taken, sold and bought

• self['money'] returns the quantity an agent possesses

2.4. Physical goods and services 31

Agent-Based Computational Economics Documentation, Release 0.9.3b0

2.4.2 Services

Services are like goods, but the need to be declared as services in the simulation abcEconomics.__init__.
service(). In this function one declares a good that creates the other good and how much. For ex-
ample if one has self['adults'] = 2, one could get 16 hours of labor every day. simulation.
declare_service('adults', 8, 'labor').

2.5 Trader

class abcEconomics.agents.trader.Trader(id, agent_parameters, simulation_parameters)
Bases: object

Agents can trade with each other. The clearing of the trade is taken care of fully by abcEconomics. Selling a
good works in the following way:

1. An agent sends an offer. sell()

The good offered is blocked and self.possession(. . .) does shows the decreased amount.

2. Next subround: An agent receives the offer get_offers(), and can accept(), reject() or par-
tially accept it. accept()

The good is credited and the price is deducted from the agent’s possessions.

3. Next subround:

• in case of acceptance the money is automatically credited.

• in case of partial acceptance the money is credited and part of the blocked good is unblocked.

• in case of rejection the good is unblocked.

Analogously for buying: buy()

Example:

Agent 1
def sales(self):

self.remember_trade = self.sell('Household', 0, 'cookies', quantity=5,
→˓price=self.price)

Agent 2
def receive_sale(self):

oo = self.get_offers('cookies')
for offer in oo:

if offer.price < 0.3:
try:

self.accept(offer)
except NotEnoughGoods:

self.accept(offer, self['money'] / offer.price)
else:

self.reject(offer)

Agent 1, subround 3
def learning(self):

offer = self.info(self.remember_trade)
if offer.status == 'reject':

self.price *= .9

(continues on next page)

32 Chapter 2. Simulation Programming

https://docs.python.org/3/library/functions.html#object

Agent-Based Computational Economics Documentation, Release 0.9.3b0

(continued from previous page)

elif offer.status = 'accepted':
self.price *= offer.final_quantity / offer.quantity

Example:

Agent 1
def sales(self):

self.remember_trade = self.sell('Household', 0, 'cookies', quantity=5,
→˓price=self.price, currency='dollars')

Agent 2
def receive_sale(self):

oo = self.get_offers('cookies')
for offer in oo:

if ((offer.currency == 'dollars' and offer.price < 0.3 * exchange_rate)
or (offer.currency == 'euros' and dollars'offer.price < 0.3)):

try:
self.accept(offer)

except NotEnoughGoods:
self.accept(offer, self['money'] / offer.price)

else:
self.reject(offer)

If we did not implement a barter class, but one can use this class as a barter class,

accept(offer, quantity=-999, epsilon=1e-11)
The buy or sell offer is accepted and cleared. If no quantity is given the offer is fully accepted; If a quantity
is given the offer is partial accepted.

Args:

offer: the offer the other party made

quantity: quantity to accept. If not given all is accepted

epsilon (optional): if you have floating point errors, a quantity or prices is a fraction of number
to high or low. You can increase the floating point tolerance. See troubleshooting – floating
point problems

Return: Returns a dictionary with the good’s quantity and the amount paid.

buy(receiver, good, quantity, price, currency=’money’, epsilon=1e-11)
commits to sell the quantity of good at price

The goods are not in haves or self.count(). When the offer is rejected it is automatically re-credited. When
the offer is accepted the money amount is credited. (partial acceptance accordingly)

Args:

receiver: The name of the receiving agent a tuple (group, id). e.G. (‘firm’, 15)

‘good’: name of the good

quantity: maximum units disposed to buy at this price

price: price per unit

currency: is the currency of this transaction (defaults to ‘money’)

2.5. Trader 33

Agent-Based Computational Economics Documentation, Release 0.9.3b0

epsilon (optional): if you have floating point errors, a quantity or prices is a fraction of number to
high or low. You can increase the floating point tolerance. See troubleshooting – floating point
problems

get_buy_offers(good, sorted=True, descending=False, shuffled=True)

get_buy_offers_all(descending=False, sorted=True)

get_offers(good, sorted=True, descending=False, shuffled=True)
returns all offers of the ‘good’ ordered by price.

Offers that are not accepted in the same subround (def block) are automatically rejected. However you
can also manually reject.

peek_offers can be used to look at the offers without them being rejected automatically

Args:

good: the good which should be retrieved

sorted(bool, default=True): Whether offers are sorted by price. Faster if False.

descending(bool, default=False): False for descending True for ascending by price

shuffled(bool, default=True): whether the order of messages is randomized or correlated with the
ID of the agent. Setting this to False speeds up the simulation considerably, but introduces a bias.

Returns: A list of abcEconomics.trade.Offer ordered by price.

Example:

offers = get_offers('books')
for offer in offers:

if offer.price < 50:
self.accept(offer)

elif offer.price < 100:
self.accept(offer, 1)

else:
self.reject(offer) # optional

get_offers_all(descending=False, sorted=True)
returns all offers in a dictionary, with goods as key. The in each goods-category the goods are ordered by
price. The order can be reversed by setting descending=True

Offers that are not accepted in the same subround (def block) are automatically rejected. However you
can also manually reject.

Args:

descending(optional): is a bool. False for descending True for ascending by price

sorted(default=True): Whether offers are sorted by price. Faster if False.

Returns:

a dictionary with good types as keys and list of abcEconomics.trade.Offer as values

Example:

oo = get_offers_all(descending=False)
for good_category in oo:

print('The cheapest good of category' + good_category
+ ' is ' + good_category[0])
for offer in oo[good_category]:

(continues on next page)

34 Chapter 2. Simulation Programming

Agent-Based Computational Economics Documentation, Release 0.9.3b0

(continued from previous page)

if offer.price < 0.5:
self.accept(offer)

for offer in oo.beer:
print(offer.price, offer.sender_group, offer.sender_id)

get_sell_offers(good, sorted=True, descending=False, shuffled=True)

get_sell_offers_all(descending=False, sorted=True)

give(receiver, good, quantity, epsilon=1e-11)
gives a good to another agent

Args:

receiver: The name of the receiving agent a tuple (group, id). e.G. (‘firm’, 15)

good: the good to be transfered

quantity: amount to be transfered

epsilon (optional): if you have floating point errors, a quantity or prices is a fraction of number to
high or low. You can increase the floating point tolerance. See troubleshooting – floating point
problems

Raises:

AssertionError, when good smaller than 0.

Return: Dictionary, with the transfer, which can be used by self.log(. . .).

Example:

self.log('taxes', self.give('money': 0.05 * self.possession('money'))

peak_buy_offers(good, sorted=True, descending=False, shuffled=True)

peak_offers(good, sorted=True, descending=False, shuffled=True)
returns a peak on all offers of the ‘good’ ordered by price. Peaked offers can not be accepted or rejected
and they do not expire.

Args:

good: the good which should be retrieved descending(bool, default=False): False for descending
True for ascending by price

Returns: A list of offers ordered by price

Example:

offers = get_offers('books')
for offer in offers:

if offer.price < 50:
self.accept(offer)

elif offer.price < 100:
self.accept(offer, 1)

else:
self.reject(offer) # optional

peak_sell_offers(good, sorted=True, descending=False, shuffled=True)

2.5. Trader 35

Agent-Based Computational Economics Documentation, Release 0.9.3b0

reject(offer)
Rejects and offer, if the offer is subsequently accepted in the same subround it is accepted’. Peaked offers
can not be rejected.

Args:

offer: the offer to be rejected

sell(receiver, good, quantity, price, currency=’money’, epsilon=1e-11)
commits to sell the quantity of good at price

The good is not available for the agent. When the offer is rejected it is automatically re-credited. When
the offer is accepted the money amount is credited. (partial acceptance accordingly)

Args:

receiver_group: group of the receiving agent

receiver_id: number of the receiving agent

‘good’: name of the good

quantity: maximum units disposed to buy at this price

price: price per unit

currency: is the currency of this transaction (defaults to ‘money’)

epsilon (optional): if you have floating point errors, a quantity or prices is a fraction of number to
high or low. You can increase the floating point tolerance. See troubleshooting – floating point
problems

Returns: A reference to the offer. The offer and the offer status can be accessed with
self.info(offer_reference).

Example:

def subround_1(self):
self.offer = self.sell('household', 1, 'cookies', quantity=5, price=0.1)

def subround_2(self):
offer = self.info(self.offer)
if offer.status == 'accepted':

print(offer.final_quantity , 'cookies have be bougth')
else:

offer.status == 'rejected':
print('On diet')

take(receiver, good, quantity, epsilon=1e-11)
take a good from another agent. The other agent has to accept. using self.accept()

Args:

receiver_group: group of the receiving agent

receiver_id: number of the receiving agent

good: the good to be taken

quantity: the quantity to be taken

epsilon (optional): if you have floating point errors, a quantity or prices is a fraction of number
to high or low. You can increase the floating point tolerance. See troubleshooting – floating
point problems

36 Chapter 2. Simulation Programming

Agent-Based Computational Economics Documentation, Release 0.9.3b0

abcEconomics.agents.trader.Offer(sender, receiver, good, quantity, price, currency, sell, status,
final_quantity, id, made, status_round)

This is an offer container that is send to the other agent. You can access the offer container both at the receiver
as well as at the sender, if you have saved the offer. (e.G. self.offer = self.sell(. . .))

it has the following properties:

sender: this is the name of the sender

receiver: This is the name of the receiver

currency: The other good against which the good is traded.

good: the good offered or demanded

quantity: the quantity offered or demanded

price: the suggested transaction price

sell: this can have the values False for buy; True for sell

status:

‘new’: has been created, but not answered

‘accepted’: trade fully accepted

‘rejected’: trade rejected

‘pending’: offer has not yet answered, and is not older than one round.

‘perished’: the perishable good was not accepted by the end of the round and therefore perished.

final_quantity: If the offer has been answerd this returns the actual quantity bought or sold. (Equal to
quantity if the offer was accepted fully)

id: a unique identifier

2.6 Messaging

2.7 Firm and production

class abcEconomics.agents.Firm
Bases: object

With self.produce a firm produces a good using production functions. For example the following farm has
a cobb-douglas production function:

class Farm(abcEconomics.Agent, abcEconomics.Firm):

def init(self):

self.production_function = create_cobb_douglas({‘land’: 0.7, ‘capital’: 0.1, ‘labor’: 0.2})

def firming(self):

self.produce(self.production_function, {{‘land’: self[‘land’], ‘capital’: self[‘capital’], ‘labor’:
2}})

Production functions can be auto generated with:

• py:meth:~abcEconomics.Firm.create_cobb_douglas or

• py:meth:~abcEconomics.Firm.create_ces or

2.6. Messaging 37

https://docs.python.org/3/library/functions.html#object

Agent-Based Computational Economics Documentation, Release 0.9.3b0

• py:meth:~abcEconomics.Firm.create_leontief

or specified by hand:

A production function looks like this:

def production_function(wheels, steel, stearing_wheels, machines):
result = {'car': min(wheels / 4, steel / 10, stearing_wheels),

'wheels': 0,
'steel': 0,
'steering_wheels': 0,
'machine': machine * 0.9}

return result

Or more readably like this:

def production_function(wheels, steel, stearing_wheels, machines): car = min(wheels / 4, steel /
10, stearing_wheels) wheels = 0 steel = 0 stearing_wheels = 0 machine = machine * 0.9 return
locals()

This production function, produces one car for every four wheels, 10 tonnes of steel and one stearing_wheel, it
also requires one machine. Wheels, steel and stearing_wheels are completely used. The plant is not used and
the machine depreciates by 10%.production.

A production function can also produce multiple goods. The last line return locals(), can not be omitted.
It returns all variables you define in this function as a dictionary.

create_ces(output, gamma, multiplier=1, shares=None)
creates a CES production function

A production function is a production process that produces the given input goods according to the CES
formula to the output good:

𝑄 = 𝐹 · [
∑︀𝑛

𝑖=1 𝑎𝑖𝑋
𝛾
𝑖]

1
𝛾

Production_functions are than used as an argument in produce, predict_vector_produce and pre-
dict_output_produce.

Args:

‘output’: Name of the output good

gamma: elasticity of substitution = 𝑠 = 1
1−𝛾

multiplier: CES multiplier 𝐹

shares: 𝑎𝑖 = Share parameter of input i,
∑︀𝑛

𝑖=1 𝑎𝑖 = 1 when share_parameters is not specified all
inputs are weighted equally and the number of inputs is flexible.

Returns:

A production_function that can be used in produce etc.

Example:

self.stuff_production_function = create_ces('stuff', gamma=0.5, multiplier=1,
shares={'labor': 0.25, 'stone':0.

→˓25, 'wood':0.5})
self.produce(self.stuff_production_function, {'stone' : 20, 'labor' : 1, 'wood
→˓': 12})

create_cobb_douglas(output, multiplier, exponents)
creates a Cobb-Douglas production function

38 Chapter 2. Simulation Programming

Agent-Based Computational Economics Documentation, Release 0.9.3b0

A production function is a production process that produces the given input goods according to the Cobb-
Douglas formula to the output good. Production_functions are than used as an argument in produce,
predict_vector_produce and predict_output_produce.

Args:

‘output’: Name of the output good

multiplier: Cobb-Douglas multiplier

{‘input1’: exponent1, ‘input2’: exponent2 . . . }: dictionary containing good names ‘input’ and
corresponding exponents

Returns:

A production_function that can be used in produce etc.

Example:

def init(self): self.plastic_production_function = create_cobb_douglas(‘plastic’, {‘oil’ : 10, ‘la-
bor’ : 1}, 0.000001)

. . .

def producing(self): self.produce(self.plastic_production_function, {‘oil’ : 20, ‘labor’ : 1})

create_leontief(output, utilization_quantities)
creates a Leontief production function

A production function is a production process that produces the given input goods according to the Leon-
tief formula to the output good. Production_functions are than used as an argument in produce, pre-
dict_vector_produce and predict_output_produce.

Args:

‘output’: Name of the output good

multiplier: dictionary of multipliers it min(good1 * a, good2 * b, good3 * c. . .)

{‘input1’: exponent1, ‘input2’: exponent2 . . . }: dictionary containing good names ‘input’ and
corresponding exponents

Returns:

A production_function that can be used in produce etc.

Example: self.car_production_function = create_leontief(‘car’, {‘wheel’ : 4, ‘chassi’ : 1})
self.produce(self.car_production_function, {‘wheel’ : 20, ‘chassi’ : 5})

produce(production_function, input_goods, results=False)
Produces output goods given the specified amount of inputs.

Transforms the Agent’s goods specified in input goods according to a given production_function to output
goods. Automatically changes the agent’s belonging. Raises an exception, when the agent does not have
sufficient resources.

Args:

production_function: A production_function produced with py:meth:~abcEconomics.Firm.create_production_function,
py:meth:~abcEconomics.Firm.create_cobb_douglas or py:meth:~abcEconomics.Firm.create_leontief

input goods dictionary or list: dictionary containing the amount of input good used for the produc-
tion or a list of all goods that get completely used.

results: If True returns a dictionary with the used and produced goods.

Raises:

2.7. Firm and production 39

Agent-Based Computational Economics Documentation, Release 0.9.3b0

NotEnoughGoods: This is raised when the goods are insufficient.

Example:

car = {'tire': 4, 'metal': 2000, 'plastic': 40}
bike = {'tire': 2, 'metal': 400, 'plastic': 20}
try:

self.produce(car_production_function, car)
except NotEnoughGoods:

A.produce(bike_production_function, bike)

self.produce(car_production_function, ['tire', 'metal', 'plastic']) #
→˓produces using all goods

2.8 Household and consumption

The Household class extends the agent by giving him utility functions and the ability to consume goods.

class abcEconomics.agents.Household
Bases: object

consume(utility_function, input_goods)
consumes input_goods returns utility according to the agent’s utility function.

A utility_function, has to be set before see py:meth:~abcEconomics.Household.create_cobb_douglas_utility_function
or manually; see example.

Args:

utility_function: A function that takes goods as parameters and returns a utility or returns (util-
ity, left_over_dict). Where left_over_dict is a dictionary of all goods that are not completely
consumed

input goods dictionary or list: dictionary containing the amount of input good used consumed
or a list of all goods that get completely consumed.

Raises: NotEnoughGoods: This is raised when the goods are insufficient.

Returns: The utility as a number. To log it see example.

Example:

def utility_function(car, cookies, bike):
utility = car ** 0.5 * cookies ** 0.2 * bike ** 0.3
cookies = 0 # cookies are consumed, while the other goods are not

→˓consumed
return utility, locals()

def utility_function(cake, cookies, bonbons): # all goods get completely
→˓consumed

utility = cake ** 0.5 * cookies ** 0.2 * bonbons ** 0.3
return utility

self.consumption_set = {'car': 1, 'cookies': 2000, 'bike': 2}
self.consume_everything = ['car', 'cookies', 'bike']
try:

(continues on next page)

40 Chapter 2. Simulation Programming

https://docs.python.org/3/library/functions.html#object

Agent-Based Computational Economics Documentation, Release 0.9.3b0

(continued from previous page)

utility = self.consume(utility_function, self.consumption_set)
except NotEnoughGoods:

utility = self.consume(utility_function, self.consume_everything)
self.log('utility': {'u': utility})

create_cobb_douglas_utility_function(exponents)
creates a Cobb-Douglas utility function

Utility_functions are than used as an argument in consume_with_utility, predict_utility and pre-
dict_utility_and_consumption.

Args: {‘input1’: exponent1, ‘input2’: exponent2 . . . }: dictionary containing good names ‘input’ and
correstponding exponents

Returns: A utility_function that can be used in consume_with_utility etc.

Example: self._utility_function = self.create_cobb_douglas({‘bread’ : 10, ‘milk’ : 1})
self.produce(self.plastic_utility_function, {‘bread’ : 20, ‘milk’ : 1})

2.9 Observing agents and logging

There are different ways of observing your agents:

Trade Logging: abcEconomics by default logs all trade and creates a SAM or IO matrix.

Manual in agent logging: An agent is instructed to log a variable with log() or a change in a variable with
log_change().

Aggregate Data: aggregate() save agents possessions and variable aggregated over a group

Panel Data: panel() creates panel data for all agents in a specific agent group at a specific point in every round. It
is set in start.py

How to retrieve the Simulation results is explained in retrieval

2.9.1 Trade Logging

By default abcEconomics logs all trade and creates a social accounting matrix or input output matrix. Because the
creation of the trade log is very time consuming you can change the default behavior in world_parameter.csv. In the
column ‘trade_logging’ you can choose ‘individual’, ‘group’ or ‘off’. (Without the apostrophes!).

2.9.2 Manual logging

All functions except the trade related functions can be logged. The following code logs the production function and
the change of the production from last year:

output = self.produce(self.inputs)
self.log('production', output)
self.log_change('production', output)

Log logs dictionaries. To log your own variable:

self.log('price', {'input': 0.8, 'output': 1})

2.9. Observing agents and logging 41

Agent-Based Computational Economics Documentation, Release 0.9.3b0

Further you can write the change of a variable between a start and an end point with: observe_begin() and
observe_end().

2.9.3 Panel Data

Group.panel_log(variables=[], goods=[], func={}, len=[])
panel_log(.) writes a panel of variables and goods of a group of agents into the database, so that it is displayed
in the gui.

Args:

goods (list, optional): a list of all goods you want to track as ‘strings’

variables (list, optional): a list of all variables you want to track as ‘strings’

func (dict, optional): accepts lambda functions that execute functions. e.G. func = lambda self:
self.old_money - self.new_money

len (list, optional): records the length of the list or dictionary with that name.

Example in start.py:

for round in simulation.next_round():
firms.produce_and_sell()
firms.panel_log(goods=['money', 'input'],

variables=['production_target', 'gross_revenue'])
households.buying()

2.9.4 Aggregate Data

Group.agg_log(variables=[], goods=[], func={}, len=[])
agg_log(.) writes a aggregate data of variables and goods of a group of agents into the database, so that it is
displayed in the gui.

Args:

goods (list, optional): a list of all goods you want to track as ‘strings’

variables (list, optional): a list of all variables you want to track as ‘strings’

func (dict, optional): accepts lambda functions that execute functions. e.G. func = lambda self:
self.old_money - self.new_money

len (list, optional): records the length of the list or dictionary with that name.

Example in start.py:

for round in simulation.next_round():
firms.produce_and_sell()
firms.agg_log(goods=['money', 'input'],

variables=['production_target', 'gross_revenue'])
households.buying()

2.10 Retrieval of the simulation results

Agents can log their internal states and the simulation can create panel data. abcEconomics.logger.

42 Chapter 2. Simulation Programming

Agent-Based Computational Economics Documentation, Release 0.9.3b0

the results are stored in a subfolder of the ./results/ folder. The exact path is in simulation.path. So if you want to
post-process your data, you can write a function that changes in to the simulation.path directory and manipulates the
CSV files there. The tables are stored as ‘.csv’ files which can be opened with excel.

The same data is also as a sqlite3 database ‘database.db’ available. It can be opened by ‘sqlitebrowser’ in ubuntu.

Example:

In start.py

simulation = abcEconomics.Simulation(...)
...
simulation.run()

os.chdir(simulation.path)
firms = pandas.read_csv('aggregate_firm.csv')
...

2.11 NotEnoughGoods Exception

exception abcEconomics.NotEnoughGoods(_agent_name, good, amount_missing)
Bases: Exception

Methods raise this exception when the agent has less goods than needed

These functions (self.produce, self.offer, self.sell, self.buy) should be encapsulated by a try except block:

try:
self.produce(...)

except NotEnoughGoods:
alternative_statements()

2.11. NotEnoughGoods Exception 43

https://docs.python.org/3/library/exceptions.html#Exception

Agent-Based Computational Economics Documentation, Release 0.9.3b0

44 Chapter 2. Simulation Programming

CHAPTER 3

Advanced

3.1 Quote

3.2 Spatial and Netlogo like Models

abcEconomics deliberately does not provide spatial representation, instead
it integrates with other packages that specialize in spatial representation.

3.2.1 Netlogo like models

For Netlogo like models in Python, we recommend using abcEconomics together with MESA

A simple example shows how to build a spatial model in abcEconomics using MESA:

On github

A wrapper file to start the graphical representation and the simulation

""" This is a simple demonstration model how to integrate abcEconomics and mesa.
The model and scheduler specification are taken care of in
abcEconomics instead of Mesa.

Based on
https://github.com/projectmesa/mesa/tree/master/examples/boltzmann_wealth_model.

For further reading, see
[Dragulescu, A and Yakovenko, V. Statistical Mechanics of Money, Income, and Wealth:
→˓A Short Survey. November, 2002](http://arxiv.org/pdf/cond-mat/0211175v1.pdf)
"""
from model import MoneyModel
from mesa.visualization.modules import CanvasGrid

(continues on next page)

45

http://mesa.readthedocs.io/en/latest/overview.html
https://github.com/AB-CE/examples

Agent-Based Computational Economics Documentation, Release 0.9.3b0

(continued from previous page)

from mesa.visualization.ModularVisualization import ModularServer
from mesa.visualization.modules import ChartModule

def agent_portrayal(agent):
""" This function returns a big red circle, when an agent is wealthy and a
small gray circle when he is not """
portrayal = {"Shape": "circle",

"Filled": "true",
"r": 0.5}

if agent.report_wealth() > 0:
portrayal["Color"] = "red"
portrayal["Layer"] = 0

else:
portrayal["Color"] = "grey"
portrayal["Layer"] = 1
portrayal["r"] = 0.2

return portrayal

def main(x_size, y_size):
""" This function sets up a canvas to graphically represent the model 'MoneyModel'
and a chart, than it runs the server and runs the model in model.py in the

→˓browser """
grid = CanvasGrid(agent_portrayal, x_size, y_size, 500, 500)

chart = ChartModule([{"Label": "Gini",
"Color": "Black"}],

data_collector_name='datacollector')
the simulation uses a class DataCollector, that collects the data and
relays it from self.datacollector to the webpage

server = ModularServer(MoneyModel,
[grid, chart],
"abcEconomics and MESA integrated",
{'num_agents': 1000, 'x_size': x_size, 'y_size': y_size})

server.port = 8534 # change this number if address is in use
server.launch()

if __name__ == '__main__':
main(25, 25)

A file with the simulation itself, that can be executed also without the GUI

""" This is a simple demonstration model how to integrate abcEconomics and mesa.
The model and scheduler specification are taken care of in
abcEconomics instead of Mesa.

Based on
https://github.com/projectmesa/mesa/tree/master/examples/boltzmann_wealth_model.

For further reading, see
[Dragulescu, A and Yakovenko, V. Statistical Mechanics of Money, Income, and Wealth:
→˓A Short Survey. November, 2002](http://arxiv.org/pdf/cond-mat/0211175v1.pdf)(continues on next page)

46 Chapter 3. Advanced

Agent-Based Computational Economics Documentation, Release 0.9.3b0

(continued from previous page)

"""
import abcEconomics as abce
from mesa.space import MultiGrid
from mesa.datacollection import DataCollector
from moneyagent import MoneyAgent

def compute_gini(model):
""" calculates the index of wealth distribution form a list of numbers """
agent_wealths = model.wealths
x = sorted(agent_wealths)
N = len(x)
B = sum(xi * (N - i) for i, xi in enumerate(x)) / (N * sum(x))
return 1 + (1 / N) - 2 * B

class MoneyModel(abce.Simulation): # The actual simulation must inherit from
→˓Simulation

""" The actual simulation. In order to interoperate with MESA the simulation
needs to be encapsulated in a class. __init__ sets the simulation up. The step
function runs one round of the simulation. """

def __init__(self, num_agents, x_size, y_size):
super().__init__(name='abcEconomics and MESA integrated',

processes=1)
initialization of the base class. MESA integration requires
single processing
self.grid = MultiGrid(x_size, y_size, True)
self.agents = self.build_agents(MoneyAgent, 'MoneyAgent', num_agents,

grid=self.grid)
abcEconomics agents must inherit the MESA grid
self.running = True
MESA requires this
self.datacollector = DataCollector(

model_reporters={"Gini": compute_gini})
The data collector collects a certain aggregate value so the graphical
components can access them

self.wealths = [0 for _ in range(num_agents)]
self.r = 0

def step(self):
""" In every step the agent's methods are executed, every set the round
counter needs to be increased by self.next_round() """
self.advance_round(self.r)
self.agents.move()
self.agents.give_money()
self.wealths = self.agents.report_wealth()
agents report there wealth in a list self.wealth
self.datacollector.collect(self)
collects the data
self.r += 1

if __name__ == '__main__':
""" If you run model.py the simulation is executed without graphical
representation """

(continues on next page)

3.2. Spatial and Netlogo like Models 47

Agent-Based Computational Economics Documentation, Release 0.9.3b0

(continued from previous page)

money_model = MoneyModel(1000, 20, 50)
for r in range(100):

print(r)
money_model.step()

A simple agent

import abcEconomics as abce
import random

class MoneyAgent(abce.Agent):
""" agents move randomly on a grid and give_money to another agent in the same

→˓cell """

def init(self, grid):
self.grid = grid
""" the grid on which agents live must be imported """
x = random.randrange(self.grid.width)
y = random.randrange(self.grid.height)
self.pos = (x, y)
self.grid.place_agent(self, (x, y))
self.create('money', random.randrange(2, 10))

def move(self):
""" moves randomly """
possible_steps = self.grid.get_neighborhood(self.pos,

moore=True,
include_center=False)

new_position = random.choice(possible_steps)
self.grid.move_agent(self, new_position)

def give_money(self):
""" If the agent has wealth he gives it to cellmates """
cellmates = self.grid.get_cell_list_contents([self.pos])
if len(cellmates) > 1:

other = random.choice(cellmates)
try:

self.give(other.name, good='money', quantity=1)
except abce.NotEnoughGoods:

pass

def report_wealth(self):
return self['money']

3.3 Create Plugins

abcEconomics has three plugin so far: abcFinance, abcLogistics, abcCython. If you want to author your own plugin -
its dead simple. All you have to do is write a class that inherits from Agent in agent.py. This class can overwrite:

def __init__(self, id, group, trade_logging, database, random_seed, num_managers,
agent_parameters, simulation_parameters,

(continues on next page)

48 Chapter 3. Advanced

Agent-Based Computational Economics Documentation, Release 0.9.3b0

(continued from previous page)

check_unchecked_msgs, start_round=None):
def _begin_subround(self):
def _end_subround(self):
def _advance_round(self, time):

For example like this:

class UselessAgent(abcEconomics.Agent):
def __init__(self, id, group, trade_logging, database, random_seed, num_managers,

agent_parameters, simulation_parameters,
check_unchecked_msgs, start_round=None):

super().__init__(id, group, trade_logging,
database, random_seed, num_managers, agent_parameters,
simulation_parameters, check_unchecked_msgs,
start_round):

print("Here i begin")

def _begin_subround(self):
super()._begin_subround()
print('subround begins')

def _end_subround(self):
super()._end_subround()
print('subround finishes')

def _advance_round(self, time):
super()._advance_round(time)
print('Super I made it to the next round')

def ability(self):
print("its %r o'clock" % self.time)
print("the simulation called my ability")

Do not overwrite the init(parameters, simulation_parameters) method

3.4 Database Plugins

In order to write custom logging functions, create a class with your custom logging:

class CustomLogging:
def __init__(self, dbname, tablename, arg3):

self.db = dataset.connect('sqlite:///factbook.db')
self.table = self.db[tablename]

def write_everything(self, name, data):
self.table.insert(dict(name=name, data=data))

def close(self):
self.db.commit()

The close method is called when the simulation in ended with simulation.finalize().

The CustomLogging class must be given to the simulation, in will be initialized with the dbpluginargs argument list:

3.4. Database Plugins 49

Agent-Based Computational Economics Documentation, Release 0.9.3b0

sim = Simulation(name='mysim', dbplugin=CustomLogging, dbpluginargs=['somedb.db',
→˓'sometable', 'arg3')

The agents can execute your custom logging function like this:

self.custom_log('write_everything', name='joe', data=5)

50 Chapter 3. Advanced

CHAPTER 4

Frequently asked Questions

4.1 How to share public information?

Agents can return information via a return statement at the end of a method. The returned variables are returned to
start.py as a list of the values. It is often useful to include the agents name e.G. return (self.name, info)

The returned information can than be passed as arguments for another method:

for r in range(100):
simulation.advance_round(r)
agents.do_something()
info = agents.return_info()
agents.receive_public_information(info=info)

Currently only named function parameters are supported.

4.2 How to share a global state?

A shared global state, breaks multiprocessing, so if you want to run the simulation on multiple cores see ‘How to share
public information’. In single processing mode, you can give each agent a dictionary as a parameter. All information
in this dictionary is shared.

4.3 How to access other agent’s information?

Once again this breaks multiprocessing. But you can return an agent’s self and give it as a parameter to other agents.

4.4 How to make abcEconomics fast?

There is several ways:

51

Agent-Based Computational Economics Documentation, Release 0.9.3b0

1. Use pypy3 instead of CPython, it can be downloaded here: https://pypy.org/download.html. With pypy3 you
can run the same code as with CPython, but about 30 times faster.

2. If you use scipy pypy3 might not work. Use numba instead. http://numba.pydata.org

3. Run the simulation with a different number of processes. With very simple agents and many messages one is
optimal, with compute intensive agents number of physical processors minus one is usually most efficient. But
experimenting even with more processes than physical processors might be worth it.

4. Use kernprof to find which agent’s method is slowest. https://github.com/rkern/line_profiler

4.5 How to load agent-parameters from a csv / excel / sql file?

The list of parameters can be passed as agent_parameters and is passed to init, as keyword arguments:

with open('emirati.csv', 'r') as f:
emirati_file = csv.DictReader(f)
emiratis_data = list(emirati_file)

emiratis = sim.build_agents(Emirati, 'emirati', agent_parameters=emiratis_data)

Note that list(file) is necessary.

4.6 Troubleshooting

Can’t find my problem: ask a question on https://stackoverflow.com, tagging the question as abcEconomics and
send an email to davoud@taghawi-nejad.de. If its a bug or an enhancement open an issue on github: https:
//github.com/DavoudTaghawiNejad/abcEconomics/issues

52 Chapter 4. Frequently asked Questions

https://pypy.org/download.html
http://numba.pydata.org
https://github.com/rkern/line_profiler
https://stackoverflow.com
mailto:davoud@taghawi-nejad.de
https://github.com/DavoudTaghawiNejad/abcEconomics/issues
https://github.com/DavoudTaghawiNejad/abcEconomics/issues

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

53

Agent-Based Computational Economics Documentation, Release 0.9.3b0

54 Chapter 5. Indices and tables

Index

A
abcEconomics (module), 25
abcEconomics.agent (module), 28
abcEconomics.agents.household (module), 40
abcEconomics.group (module), 29
accept() (abcEconomics.agents.trader.Trader

method), 33
advance_round() (abcEconomics.Simulation

method), 26
Agent (class in abcEconomics), 28
agg_log() (abcEconomics.Group method), 30
agg_log() (abcEconomics.group.Group method), 42

B
build_agents() (abcEconomics.Simulation

method), 26
buy() (abcEconomics.agents.trader.Trader method), 33
by_name() (abcEconomics.Group method), 30
by_names() (abcEconomics.Group method), 30

C
consume() (abcEconomics.agents.Household method),

40
create_agent() (abcEconomics.Simulation

method), 27
create_agents() (abcEconomics.Group method),

30
create_agents() (abcEconomics.Simulation

method), 27
create_ces() (abcEconomics.agents.Firm method),

38
create_cobb_douglas() (abcEco-

nomics.agents.Firm method), 38
create_cobb_douglas_utility_function()

(abcEconomics.agents.Household method), 41
create_leontief() (abcEconomics.agents.Firm

method), 39

D
delete_agent() (abcEconomics.Simulation

method), 27
delete_agents() (abcEconomics.Group method),

31
delete_agents() (abcEconomics.Simulation

method), 27

F
finalize() (abcEconomics.Simulation method), 27
Firm (class in abcEconomics.agents), 37

G
get_buy_offers() (abcEco-

nomics.agents.trader.Trader method), 34
get_buy_offers_all() (abcEco-

nomics.agents.trader.Trader method), 34
get_offers() (abcEconomics.agents.trader.Trader

method), 34
get_offers_all() (abcEco-

nomics.agents.trader.Trader method), 34
get_sell_offers() (abcEco-

nomics.agents.trader.Trader method), 35
get_sell_offers_all() (abcEco-

nomics.agents.trader.Trader method), 35
give() (abcEconomics.agents.trader.Trader method),

35
group (abcEconomics.Agent attribute), 28
Group (class in abcEconomics), 29

H
Household (class in abcEconomics.agents), 40

I
id (abcEconomics.Agent attribute), 29
init() (abcEconomics.Agent method), 29

N
NotEnoughGoods, 43

O
Offer() (in module abcEconomics.agents.trader), 36

55

Agent-Based Computational Economics Documentation, Release 0.9.3b0

P
panel_log() (abcEconomics.Group method), 31
panel_log() (abcEconomics.group.Group method),

42
peak_buy_offers() (abcEco-

nomics.agents.trader.Trader method), 35
peak_offers() (abcEconomics.agents.trader.Trader

method), 35
peak_sell_offers() (abcEco-

nomics.agents.trader.Trader method), 35
produce() (abcEconomics.agents.Firm method), 39

R
reject() (abcEconomics.agents.trader.Trader

method), 35

S
sell() (abcEconomics.agents.trader.Trader method),

36
Simulation (class in abcEconomics), 25

T
take() (abcEconomics.agents.trader.Trader method),

36
time (abcEconomics.Agent attribute), 29
time (abcEconomics.Simulation attribute), 27
Trader (class in abcEconomics.agents.trader), 32

56 Index

	Introduction
	Design
	Download and Installation
	Interactive jupyter notebook Tutorial
	Walk through
	Tutorial for Plant Modeling
	Examples
	unit testing

	Simulation Programming
	The simulation in start.py
	Agents
	Groups
	Physical goods and services
	Trader
	Messaging
	Firm and production
	Household and consumption
	Observing agents and logging
	Retrieval of the simulation results
	NotEnoughGoods Exception

	Advanced
	Quote
	Spatial and Netlogo like Models
	Create Plugins
	Database Plugins

	Frequently asked Questions
	How to share public information?
	How to share a global state?
	How to access other agent’s information?
	How to make abcEconomics fast?
	How to load agent-parameters from a csv / excel / sql file?
	Troubleshooting

	Indices and tables
	Index

